Remove the recv() method from mux and conn_stream.
The goal is to always receive from the upper layers, instead of waiting
for the connection later. For now, recv() is still called from the wake()
method, but that should change soon.
mux_pt_wake() calls data->wake() which can return -1 indicating that the
connection was just destroyed. We need to check for this condition and
immediately exit in this case otherwise we dereference a just freed
connection. Note that this mainly happens on idle connections between
two HTTP requests. It can have random implications between requests as
it may lead a wrong connection's polling to be re-enabled or disabled
for example, especially with threads.
This patch must be backported to 1.8.
Multiplexers are not necessarily associated to an ALPN. ALPN is a TLS extension,
so it is not always defined or used. Instead, we now rather speak of
multiplexer's protocols. So in this patch, there are no significative changes,
some structures and functions are just renamed.
Now, a multiplexer can specify if it can be install on incoming connections
(ALPN_SIDE_FE), on outgoing connections (ALPN_SIDE_BE) or both
(ALPN_SIDE_BOTH). These flags are compatible with proxies' ones.
This is a partial revert of the commit deccd1116 ("MEDIUM: mux: make
mux->snd_buf() take the byte count in argument"). It is a requirement to do
zero-copy transfers. This will be mandatory when the TX buffer of the
conn_stream will be used.
So, now, data are consumed by mux->snd_buf() and not only sent. So it needs to
update the buffer state. On its side, the caller must be aware the buffer can be
replaced y an empty or unallocated one.
As a side effet of this change, the function co_set_data() is now only responsible
to update the channel set, by update ->output field.
Totally nuke the "send" method, instead, the upper layer decides when it's
time to send data, and if it's not possible, uses the new subscribe() method
to be called when it can send data again.
Add a new "subscribe" method for connection, conn_stream and mux, so that
upper layer can subscribe to them, to be called when the event happens.
Right now, the only event implemented is "SUB_CAN_SEND", where the upper
layer can register to be called back when it is possible to send data.
The connection and conn_stream got a new "send_wait_list" entry, which
required to move a few struct members around to maintain an efficient
cache alignment (and actually this slightly improved performance).
The mux and transport rcv_buf() now takes a "flags" argument, just like
the snd_buf() one or like the equivalent syscall lower part. The upper
layers will use this to pass some information such as indicating whether
the buffer is free from outgoing data or if the lower layer may allocate
the buffer itself.
It also returns a size_t. This is in order to clean the API. Note
that the H2 mux still uses some ints in the functions called from
h2_rcv_buf(), though it's not really a problem given that H2 frames
are smaller. It may deserve a general cleanup later though.
This way the mux doesn't need to modify the buffer's metadata anymore
nor to know the output's size. The mux->snd_buf() function now takes a
const buffer and it's up to the caller to update the buffer's state.
The return type was updated to return a size_t to comply with the count
argument.
This way the senders don't need to modify the buffer's metadata anymore
nor to know about the output's split point. This way the functions can
take a const buffer and it's clearer who's in charge of updating the
buffer after a send. That's why the buffer realignment is now performed
by the caller of the transport's snd_buf() functions.
The return type was updated to return a size_t to comply with the count
argument.
Since commit f9ce57e ("MEDIUM: connection: make conn_sock_shutw() aware
of lingering"), we refrain from performing the shutw() on the socket if
there is no lingering risk. But there is a problem with this in tunnel
and in TCP modes where a client is explicitly allowed to send a shutw
to the server, eventhough it it risky.
Not doing it creates this situation reported by Ricardo Fraile and
diagnosed by Christopher : a typical HTTP client (eg: curl) connecting
via the config below to an HTTP server would receive its response,
immediately close while the server remains in keep-alive mode. The
shutr() received by haproxy from the client is "propagated" to the
server side but not acted upon because fdtab[fd].linger_risk is set,
so we expect that the next close will immediately complete this
operation.
listen proxy-tcp
bind 127.0.0.1:8888
mode tcp
timeout connect 5s
timeout server 10s
timeout client 10s
server server1 127.0.0.1:8000
But since the whole stream will not end until the server closes in
turn, the server doesn't close and haproxy expires on server timeout.
This problem has already struck by waking up an older bug and was
partially fixed with commit 8059351 ("BUG/MEDIUM: http: don't disable
lingering on requests with tunnelled responses") though it was not
enough.
The problem is that linger_risk is not suited here. In fact we need to
know whether or not it is desired to close normally or silently, and
whether or not a shutr() has already been received on this connection.
This is the approach this patch takes, and it solves the problem for
the various difficult modes (tcp, http-server-close, pretend-keepalive).
This fix needs to be backported to 1.8. Many thanks to Ricardo for
providing very detailed traces and configurations.
This new field will be used to describe certain properties of some
muxes. For now we only add MX_FL_CLEAN_ABRT to indicate that a mux
is able to unambiguously report aborts using CS_FL_ERROR contrary
to others who may only report it via a read0. This will be used to
improve handling of the abortonclose option with H2. Other flags
may come later to report multiplexing capabilities or not, support
of client/server sides etc.
In case any stream was waiting for the handshake after receiving early data,
we have to wake all of them. Do so by making the mux responsible for
removing the CO_FL_EARLY_DATA flag after all of them are woken up, instead
of doing it in si_cs_wake_cb(), which would then only work for the first one.
This makes wait_for_handshake work with HTTP/2.
This callback will be used to release upper layers when a mux is in
use. Given that the mux can be asynchronously deleted, we need a way
to release the extra information such as the session.
This callback will be called directly by the mux upon releasing
everything and before the connection itself is released, so that
the callee can find its information inside the connection if needed.
The way it currently works is not perfect, and most likely this should
instead become a mux release callback, but for now we have no easy way
to add mux-specific stuff, and since there's one mux per connection,
it works fine this way.
For H2, only the mux's timeout or other conditions might cause a
release of the mux and the connection, no stream should be allowed
to kill such a shared connection. So a stream will only detach using
cs_destroy() which will call mux->detach() then free the cs.
For now it's only handled by mux_pt. The goal is that the data layer
never has to care about the connection, which will have to be released
depending on the mux's mood.
Now these functions are able to automatically close both the transport
and the socket layer, causing the whole connection to be torn down if
needed.
The two shutdown modes are implemented for both directions, and when
a direction is closed, if it sees the other one is closed as well, it
completes by closing the connection. This is similar to what is performed
in the stream interface.
It's not deployed yet but the purpose is to get rid of conn_full_close()
where only conn_stream should be known.
In a 1:1 connection:stream there's no problem relying on the connection
flags alone to check for errors. But in a mux, it will be possible to mark
certain streams in error without having to mark all of them. An example is
an H2 client sending RST_STREAM frames to abort a long download, or a parse
error requiring to abort only this specific stream.
This commit ensures that stream-interface and checks properly check for
CS_FL_ERROR in cs->flags wherever CO_FL_ERROR was in use. Most likely over
the long term, any check for CO_FL_ERROR will have to disappear.
All the references to connections in the data path from streams and
stream_interfaces were changed to use conn_streams. Most functions named
"something_conn" were renamed to "something_cs" for this. Sometimes the
connection still is what matters (eg during a connection establishment)
and were not always renamed. The change is significant and minimal at the
same time, and was quite thoroughly tested now. As of this patch, all
accesses to the connection from upper layers go through the pass-through
mux.
The pass-through mux is the fallback used on any incoming connection
unless another mux claims the ALPN name and the proxy mode. Thus mux_pt
registers ALPN token "" (empty name) which catches everything.
For HTTP/2 and QUIC, we'll need to deal with multiplexed streams inside
a connection. After quite a long brainstorming, it appears that the
connection interface to the existing streams is appropriate just like
the connection interface to the lower layers. In fact we need to have
the mux layer in the middle of the connection, between the transport
and the data layer.
A mux can exist on two directions/sides. On the inbound direction, it
instanciates new streams from incoming connections, while on the outbound
direction it muxes streams into outgoing connections. The difference is
visible on the mux->init() call : in one case, an upper context is already
known (outgoing connection), and in the other case, the upper context is
not yet known (incoming connection) and will have to be allocated by the
mux. The session doesn't have to create the new streams anymore, as this
is performed by the mux itself.
This patch introduces this and creates a pass-through mux called
"mux_pt" which is used for all new connections and which only
calls the data layer's recv,send,wake() calls. One incoming stream
is immediately created when init() is called on the inbound direction.
There should not be any visible impact.
Note that the connection's mux is purposely not set until the session
is completed so that we don't accidently run with the wrong mux. This
must not cause any issue as the xprt_done_cb function is always called
prior to using mux's recv/send functions.