This changes all main uses of cs->endp->flags to the sc_ep_*() equivalent
by applying coccinelle script cs_endp_flags.cocci.
Note: 143 locations were touched, manually reviewed and found to be OK,
except a single one that was adjusted in cs_reset_endp() where the flags
are read and filtered to be used as-is and not as a boolean, hence was
replaced with sc_ep_get() & $FLAGS.
The script was applied with all includes:
spatch --in-place --recursive-includes -I include --sp-file $script $files
Even if `unique_id` and `s->unique_id` are identical it is a bit odd to
`isttest()` `unique_id` and then use `s->unique_id` in the call to `http_add_header()`.
This "issue" was introduced in a17e66289c08a5bfadc1bb5b5f2c618c9299fe1b,
because before that commit the function returned the length of the ID, as it
was not an ist.
The "http-restrict-req-hdr-names" option can now be set to restrict allowed
characters in the request header names to the "[a-zA-Z0-9-]" charset.
Idea of this option is to not send header names with non-alphanumeric or
hyphen character. It is especially important for FastCGI application because
all those characters are converted to underscore. For instance,
"X-Forwarded-For" and "X_Forwarded_For" are both converted to
"HTTP_X_FORWARDED_FOR". So, header names can be mixed up by FastCGI
applications. And some HAProxy rules may be bypassed by mangling header
names. In addition, some non-HTTP compliant servers may incorrectly handle
requests when header names contain characters ouside the "[a-zA-Z0-9-]"
charset.
When this option is set, the policy must be specify:
* preserve: It disables the filtering. It is the default mode for HTTP
proxies with no FastCGI application configured.
* delete: It removes request headers with a name containing a character
outside the "[a-zA-Z0-9-]" charset. It is the default mode for
HTTP backends with a configured FastCGI application.
* reject: It rejects the request with a 403-Forbidden response if it
contains a header name with a character outside the
"[a-zA-Z0-9-]" charset.
The option is evaluated per-proxy and after http-request rules evaluation.
This patch may be backported to avoid any secuirty issue with FastCGI
application (so as far as 2.2).
The STAT_ST_* values have been abused by virtually every applet and CLI
keyword handler, and this must not continue as it's a source of bugs and
of overly complicated code.
This patch renames the states to STAT_STATE_*, and keeps the previous
enum while marking each entry as deprecated. This should be sufficient to
catch out-of-tree code that might rely on them and to let them know what
to do with that.
This makes use of the generic command context allocation so that the
appctx doesn't have to declare a specific one anymore. The context is
created during parsing (both in the CLI and HTTP).
The change looks large but it's particularly mechanical. The context
initialization appears in stats.c and http_ana.c. The context is used
in stats.c and resolvers.c since "show stat resolvers" points there.
That's the reason why the definition moved to stats.h. "show info"
and "show stat" continue to share the same state definition for now.
Nothing else was modified.
Only CS_EP_ERROR flag is now removed from the endpoint when a reset is
performed. When a new the endpoint is allocated, flags are preserved. It is
the caller responsibility to remove other flags, depending on its need.
Concretly, during a connection retry or a L7 retry, we must preserve
flags. In tcpcheck and the CLI, we reset flags.
This patch is 2.6-specific. No backport needed.
A memory leak was introduced when ignore-empty option was added to redirect
rules. If there is no location, when this option is set, the redirection is
aborted and the processing continues. But when this happened, the trash buffer
allocated to format the redirect response was not released.
The bug was introduced by commit bc1223be7 ("MINOR: http-rules: add a new
"ignore-empty" option to redirects.").
This patch should fix the issue #1675. It must be backported to 2.5.
Remaining flags and associated functions are move in the conn-stream
scope. These flags are added on the endpoint and not the conn-stream
itself. This way it will be possible to get them from the mux or the
applet. The functions to get or set these flags are renamed accordingly with
the "cs_" prefix and updated to manipualte a conn-stream instead of a
stream-interface.
si_register_applet() and si_applet_release() are renamed
cs_register_applet() and cs_applet_release() and now manipulate a
conn-stream instead of a stream-inteface.
si_shutr(), si_shutw(), si_chk_rcv() and si_chk_snd() are moved in the
conn-stream scope and renamed, respectively, cs_shutr(), cs_shutw(),
cs_chk_rcv(), cs_chk_snd() and manipulate a conn-stream instead of a
stream-interface.
The stream-interface state (SI_ST_*) is now in the conn-stream. It is a
mechanical replacement for now. Nothing special. SI_ST_* and SI_SB_* were
renamed accordingly. Utils functions to manipulate these infos were moved
under the conn-stream scope.
But it could be good to keep in mind that this part should be
reworked. Indeed, at the CS level, we only need to know if it is ready to
receive or to send. The state of conn-stream from INI to EST is only used on
the server side. The client CS is immediately set to EST. Thus current
SI_ST_* states should probably be moved to the stream to reflect the server
connection state during the establishment stage.
Only the server side is concerned by the stream-interface error type. It is
useless to have an err_type field on the client side. So, it is now move to
the stream. SI_ET_* are renames STRM_ET_* and moved in stream-t.h header
file.
Flags to disable lingering and half-close are now handled at the conn-stream
level. Thus SI_FL_NOLINGER and SI_FL_NOHALF stream-int flags are replaced by
CS_FL_NOLINGER and CS_FL_NOHALF conn-stream flags.
Instead of relying on the conn-stream error, via CS_FL_ERR flags, we now
directly use the error at the endpoint level with the flag CS_EP_ERROR. It
should be safe to do so. But we must be careful because it is still possible
that an error is processed too early. Anyway, a conn-stream has always a
valid endpoint, maybe detached from any endpoint, but valid.
SI_FL_ERR is removed and replaced by CS_FL_ERROR. It is a transient patch
because the idea is to rely on the endpoint to handle errors at this
level. But if for any reason it is not possible, the stream-interface flags
will still be replaced.
The expiration date in the stream-interface was only used on the server side
to set the connect, queue or turn-around timeout. It was checked on the
frontend stream-interface, but never used concretely. So it was removed and
replaced by a connect expiration date in the stream itself. Thus, SI_FL_EXP
flag in stream-interfaces is replaced by a stream flag, SF_CONN_EXP.
The source and destination addresses at the applicative layer are moved from
the stream-interface to the conn-stream. This simplifies a bit the code and
it is a logicial step to remove the stream-interface.
The conn_retries counter was set to the max value and decremented at each
connection retry. Thus the counter reflected the number of retries left and
not the real number of retries. All calculations of redispatch or reporting
of number of retries experienced were made using subtracts from the
configured retries, which was complicated and didn't bring any benefit.
Now, this counter is set to 0 and incremented at each retry. We know we've
reached the maximum allowed connection retries by comparing it to the
configured value. In all other cases, we directly use the counter.
This patch should address the feature request #1608.
The conn_retries counter may be moved into the stream structure. It only
concerns the connection establishment. The frontend stream-interface does not
use it. So it is a logical change.
The L7 retries only concerns the stream when a server connection is
established. Thus instead of storing the L7 buffer into the
stream-interface, it may be moved to the stream. And because it is only
available for HTTP streams, it may be moved in the HTTP transaction.
Associated flags are also moved into the HTTP transaction.
All old flags CS_FL_* are now moved in the endpoint scope and renamed
CS_EP_* accordingly. It is a systematic replacement. There is no true change
except for the health-check and the endpoint reset. Here it is a bit special
because the same conn-stream is reused. Thus, we must handle endpoint
allocation errors. To do so, cs_reset_endp() has been adapted.
Thanks to this last change, it will now be possible to simplify the
multiplexer and probably the applets too. A review must also be performed to
remove some flags in the channel or the stream-interface. The HTX will
probably be simplified too. Finally, there is now some place in the
conn-stream to move info from the stream-interface.
The conn-stream endpoint is now shared between the conn-stream and the
applet or the multiplexer. If the mux or the applet is created first, it is
responsible to also create the endpoint and share it with the conn-stream.
If the conn-stream is created first, it is the opposite.
When the endpoint is only owned by an applet or a mux, it is called an
orphan endpoint (there is no conn-stream). When it is only owned by a
conn-stream, it is called a detached endpoint (there is no mux/applet).
The last entity that owns an endpoint is responsible to release it. When a
mux or an applet is detached from a conn-stream, the conn-stream
relinquishes the endpoint to recreate a new one. This way, the endpoint
state is never lost for the mux or the applet.
Some CS flags, only related to the endpoint, are moved into the endpoint
struct. More will probably moved later. Those ones are not critical. So it
is pretty safe to move them now and this will ease next changes.
When a tcp-{request,response} content or http-request/http-response
rule delivers a final verdict (deny, accept, redirect etc), the last
evaluated one will now be recorded in the stream. The purpose is to
permit to log the last one that performed a final action. For now
the log is not produced.
The orgto_hdr_name is already processed as an ist in `http_process_request`,
lets also just store it as such.
see 0643b0e7e ("MINOR: proxy: Make `header_unique_id` a `struct ist`") for a
very similar past commit.
The fwdfor_hdr_name is already processed as an ist in `http_process_request`,
lets also just store it as such.
see 0643b0e7e ("MINOR: proxy: Make `header_unique_id` a `struct ist`") for a
very similar past commit.
The monitor_uri is already processed as an ist in `http_wait_for_request`, lets
also just store it as such.
see 0643b0e7e ("MINOR: proxy: Make `header_unique_id` a `struct ist`") for a
very similar past commit.
The unsafe conn-stream API (__cs_*) is now used when we are sure the good
endpoint or application is attached to the conn-stream. This avoids compiler
warnings about possible null derefs. It also simplify the code and clear up
any ambiguity about manipulated entities.
Since recent changes related to the conn-stream/stream-interface
refactoring, GCC reports potential null pointer dereferences when we get the
appctx, the stream or the stream-interface from the conn-strem. Of course,
depending on the time, these entities may be null. But at many places, we
know they are defined and it is safe to get them without any check. Thus, we
use ALREADY_CHECKED() macro to silent these warnings.
Note that the refactoring is unfinished, so it is not a real issue for now.
Thanks to all previous changes, it is now possible to move the
stream-interface into the conn-stream. To do so, some SI functions are
removed and their conn-stream counterparts are added. In addition, the
conn-stream is now responsible to create and release the
stream-interface. While the stream-interfaces were inlined in the stream
structure, there is now a pointer in the conn-stream. stream-interfaces are
now dynamically allocated. Thus a dedicated pool is added. It is a temporary
change because, at the end, the stream-interface structure will most
probably disappear.
To be able to move the stream-interface from the stream to the conn-stream, all
access to the SI is done via the conn-stream. This patch is limited to the
http-ana part.
frontend and backend conn-streams are now directly accesible from the
stream. This way, and with some other changes, it will be possible to remove
the stream-interfaces from the stream structure.
Thanks to previous changes, it is now possible to set an appctx as endpoint
for a conn-stream. This means the appctx is no longer linked to the
stream-interface but to the conn-stream. Thus, a pointer to the conn-stream
is explicitly stored in the stream-interface. The endpoint (connection or
appctx) can be retrieved via the conn-stream.
The backend conn-stream is no longer released on connection retry. This
means the conn-stream is detached from the underlying connection but not
released. Thus, during connection retries, the stream has always an
allocated conn-stream with no connection. All previous changes were made to
make this possible.
Note that .attach() mux callback function was changed to get the conn-stream
as argument. The muxes are no longer responsible to create the conn-stream
when a server connection is attached to a stream.
The conn-stream will progressively replace the stream-interface. Thus, a
stream will have to allocate the backend conn-stream during its
creation. This means it will be possible to have a conn-stream with no
connection. To prepare this change, we test the conn-stream's connection
when we retrieve it.
Ensure calls to http_find_header() terminate. If a "Set-Cookie2"
header is found then the while(1) loop in
http_manage_server_side_cookies() will never terminate, resulting in
the watchdog firing and the process terminating via SIGABRT.
The while(1) loop becomes unbounded because an unmatched call to
http_find_header("Set-Cookie") will leave ctx->blk=NULL. Subsequent
calls to check for "Set-Cookie2" will now enumerate from the beginning
of all the blocks and will once again match on subsequent
passes (assuming a match first time around), hence the loop becoming
unbounded.
This issue was introduced with HTX and this fix should be backported
to all versions supporting HTX.
Many thanks to Grant Spence (gspence@redhat.com) for working through
this issue with me.
When a filter is attached on a stream, the FLT_END analyser must not be
removed from the response channel on L7 retry. It is especially important
because CF_FLT_ANALYZE flag is still set. This means the synchronization
between the two sides when the filter ends can be blocked. Depending on the
timing, this can freeze the stream infinitely or lead to a spinning loop.
Note that the synchronization between the two sides at the end of the
analysis was introduced because the stream was reused in HTTP between two
transactions. But, since the HTX was introduced, a new stream is created for
each transaction. So it is probably possible to remove this step for 2.2 and
higher.
This patch must be backported as far as 2.0.
At many places we use construct such as:
if (objt_server(blah))
do_something(objt_server(blah));
At -O2 the compiler manages to simplify the operation and see that the
second one returns the same result as the first one. But at -O1 that's
not always the case, and the compiler is able to emit a second
expression and sees the potential null that results from it, and may
warn about a potential null deref (e.g. with gcc-6.5). There are two
solutions to this:
- either the result of the first test has to be passed to a local
variable
- or the second reference ought to be unchecked using the __objt_*
variant.
This patch fixes all occurrences at once by taking the second approach
(the least intrusive). For constructs like:
objt_server(blah) ? objt_server(blah)->name : "no name"
a macro could be useful. It would for example take the object type
(server), the field name (name) and the default value. But there
are probably not enough occurrences across the whole code for this
to really matter.
This should be backported wherever it applies.
This reverts commit 597909f4e67866c4f3ecf77f95f2cd4556c0c638
http-after-response rules evaluation was changed to do the same that was
done for http-response, in the code. However, the opposite must be performed
instead. Only the rules of the current section must be stopped. Thus the
above commit is reverted and the http-response rules evaluation will be
fixed instead.
Note that only "allow" action is concerned. It is most probably an uncommon
action for an http-after-request rule.
This patch must be backported as far as 2.2 if the above commit was
backported.
A TCP/HTTP action can stop the rules evaluation. However, it should be
applied on the current section only. For instance, for http-requests rules,
an "allow" on a frontend must stop evaluation of rules defined in this
frontend. But the backend rules, if any, must still be evaluated.
For http-response rulesets, according the configuration manual, the same
must be true. Only "allow" action is concerned. However, since the
beginning, this action stops evaluation of all remaining rules, not only
those of the current section.
This patch may be backported to all supported versions. But it is not so
critical because the bug exists since a while. I doubt it will break any
existing configuration because the current behavior is
counterintuitive.
When a tarpit action is performed, we must be sure to drain data from the
request channel. Otherwise, the mux on the frontend side may be blocked
because the request channel buffer is full.
This may lead to Two bugs. The first one is a HOL blocking on the H2
multiplexer. A tarpitted stream may block all the others because data are
not drained for the whole tarpit timeout. The second bug is a ping-pong loop
between the multiplexer and the stream. The mux is waiting for more space in
the channel buffer, so it wakes up the stream. And the stream systematically
re-enables receives.
This last part is not pretty clean and it will be addressed with another
fix. But draning request data is a good way to fix both bugs in same time.
This patch must be backported as far as 2.0. The legacy HTTP mode is
probably affected, but I don't know if same bugs may be experienced in this
mode.