option abortonclose may cause a valid connection to be aborted just
after the request has been sent. This is because we check for it
during the session establishment sequence before checking for write
activity. So if the abort and the connect complete at the same time,
the abort is still considered. Let's check for an explicity partial
write before aborting.
This fix should be backported to 1.4 too.
We now have http_apply_redirect_rule() which does all the redirect-specific
job instead of having this inside http_process_req_common().
Also one of the benefit gained from uniformizing this code is that both
keep-alive and close response do emit the PR-- flags. The fix for the
flags could probably be backported to 1.4 though it's very minor.
The previous function http_perform_redirect() was becoming confusing
so it was renamed http_perform_server_redirect() since it only applies
to server-based redirection.
It happens that all of them call parse_logformat_line() which sets
proxy->to_log with a number of flags affecting the line format for
all three users. For example, having a unique-id specified disables
the default log-format since fe->to_log is tested when the session
is established.
Similarly, having "option logasap" will cause "+" to be inserted in
unique-id or headers referencing some of the fields depending on
LW_BYTES.
This patch first removes most of the dependency on fe->to_log whenever
possible. The first possible cleanup is to stop checking fe->to_log
for being null, considering that it always contains at least LW_INIT
when any such usage is made of the log-format!
Also, some checks are wrong. s->logs.logwait cannot be nulled by
"logwait &= ~LW_*" since LW_INIT is always there. This results in
getting the wrong log at the end of a request or session when a
unique-id or add-header is set, because logwait is still not null
but the log-format is not checked.
Further cleanups are required. Most LW_* flags should be removed or at
least replaced with what they really mean (eg: depend on client-side
connection, depend on server-side connection, etc...) and this should
only affect logging, not other mechanisms.
This patch fixes the default log-format and tries to limit interferences
between the log formats, but does not pretend to do more for the moment,
since it's the most visible breakage.
The stick counters were in two distinct sets of struct members,
causing some code to be duplicated. Now we use an array, which
enables some processing to be performed in loops. This allowed
the code to be shrunk by 700 bytes.
Returns the current amount of concurrent connections tracking the same
tracked counters. This number is automatically incremented when tracking
begins and decremented when tracking stops. It differs from sc1_conn_cur in
that it does not rely on any stored information but on the table's reference
count (the "use" value which is returned by "show table" on the CLI). This
may sometimes be more suited for layer7 tracking.
Until now it was only possible to use track-sc1/sc2 with "src" which
is the IPv4 source address. Now we can use track-sc1/sc2 with any fetch
as well as any transformation type. It works just like the "stick"
directive.
Samples are automatically converted to the correct types for the table.
Only "tcp-request content" rules may use L7 information, and such information
must already be present when the tracking is set up. For example it becomes
possible to track the IP address passed in the X-Forwarded-For header.
HTTP request processing now also considers tracking from backend rules
because we want to be able to update the counters even when the request
was already parsed and tracked.
Some more controls need to be performed (eg: samples do not distinguish
between L4 and L6).
Commit 2b199c9a attempted to fix all places where the transport layer
is improperly closed, but it missed one place in session_free(). If
SSL ciphers are logged, the close() is delayed post-log and performed
in session_free(). However, conn_xprt_close() only closes the transport
layer but not the file descriptor, resulting in a slow FD leak which is
hardly noticeable until the process cannot accept any new connection.
A workaround consisted in disabling %sslv/%sslc in log-format.
So use conn_full_close() instead of conn_xprt_close() to fix this there
too.
A similar pending issue existed in the close during outgoing connection
failure, though on this side, the transport layer is never tracked at the
moment.
When the PROXY protocol header is expected and fails, leading to an
abort of the incoming connection, we now emit a log message. If option
dontlognull is set and it was just a port probe, then nothing is logged.
Since the introduction of SSL, it became quite annoying not to get any useful
info in logs about handshake failures. Let's improve reporting for embryonic
sessions by checking a per-connection error code and reporting it into the logs
if an error happens before the session is completely instanciated.
The "dontlognull" option is supported in that if a connection does not talk
before being aborted, nothing will be emitted.
At the moment, only timeouts are considered for SSL and the PROXY protocol,
but next patches will handle more errors.
To ensure that we only count when a response was compressed, we also
check for the SN_COMP_READY flag which indicates that the compression
was effectively initialized. Comp_algo alone is meaningless.
Depending on the content-types and accept-encoding fields, some responses
might or might not be compressed. Let's have a counter of the number of
compressed responses and report it in the stats to help improve compression
usage.
Some cosmetic issues were fixed in the CSV output too (missing commas at the
end).
Several places got the connection close sequence wrong because it
was not obvious. In practice we always need the same sequence when
aborting, so let's have a common function for this.
There was a possible memory leak in the zlib code when the first response of
a keep-alive session was compressed, because the next request would reset the
compression algo, preventing a later call to session_free() from releasing it.
The reason is that it is necessary to release the assigned resources in
http_end_txn_clean_session().
Instead of storing a couple of (int, ptr) in the struct connection
and the struct session, we use a different method : we only store a
pointer to an integer which is stored inside the target object and
which contains a unique type identifier. That way, the pointer allows
us to retrieve the object type (by dereferencing it) and the object's
address (by computing the displacement in the target structure). The
NULL pointer always corresponds to OBJ_TYPE_NONE.
This reduces the size of the connection and session structs. It also
simplifies target assignment and compare.
In order to improve the generated code, we try to put the obj_type
element at the beginning of all the structs (listener, server, proxy,
si_applet), so that the original and target pointers are always equal.
A lot of code was touched by massive replaces, but the changes are not
that important.
Hijackers were functions designed to inject data into channels in the
distant past. They became unused around 1.3.16, and since there has
not been any user of this mechanism to date, it's uncertain whether
the mechanism still works (and it's not really useful anymore). So
better remove it as well as the pointer it uses in the channel struct.
si_fd() is not used a lot, and breaks builds on OpenBSD 5.2 which
defines this name for its own purpose. It's easy enough to remove
this one-liner function, so let's do it.
There is a small waste of CPU cycles when no handshake is required on an
accepted connection, because we had to perform one call to conn_fd_handler()
to mark the connection CONNECTED and to call process_session() again to say
that nothing happened.
By marking the connection CONNECTED when there is no pending handshake, we
avoid this extra call to process_session().
Having a global expiration timer for a task means that the tasks are regularly
woken up (at least after each expiration timer). It's totally useless and counter
productive to process the whole session upon each such wakeup, and it's fairly
easy to detect such wakeups, so let's just update the task's timer and return
to sleep when this happens.
For 100k concurrent connections with 10s of timeouts, this can save 10k wakeups
per second, which is not bad.
With extra-large buffers, it is possible that a lot of data are sent upon
connection establishment before the session is notified. The issue is how
to handle a send() error after some data were actually sent.
At the moment, only a connection error is reported, causing a new connection
attempt and send() to restart after the last data. We absolutely don't want
to retry the connect() if at least one byte was sent, because those data are
lost.
The solution consists in reporting exactly what happens, which is :
- a successful connection attempt
- a read/write error on the channel
That way we go on with sess_establish(), the response analysers are called
and report the appropriate connection state for the error (typically a server
abort while waiting for a response). This mechanism also guarantees that we
won't retry since it's a success. The logs also report the correct connect
time.
Note that 1.4 is not directly affected because it only attempts one send(),
so it cannot detect a send() failure here and distinguish it form a failed
connection attempt. So no backport is needed. Also, this is just a safe belt
we're taking, since this issue should not happen anymore since previous commit.
The trash is used everywhere to store the results of temporary strings
built out of s(n)printf, or as a storage for a chunk when chunks are
needed.
Using global.tune.bufsize is not the most convenient thing either.
So let's replace trash with a chunk and directly use it as such. We can
then use trash.size as the natural way to get its size, and get rid of
many intermediary chunks that were previously used.
The patch is huge because it touches many areas but it makes the code
a lot more clear and even outlines places where trash was used without
being that obvious.
We will need to be able to switch server connections on a session and
to keep idle connections. In order to achieve this, the preliminary
requirement is that the connections can survive the session and be
detached from them.
Right now they're still allocated at exactly the same place, so when
there is a session, there are always 2 connections. We could soon
improve on this by allocating the outgoing connection only during a
connect().
This current patch touches a lot of code and intentionally does not
change any functionnality. Performance tests show no regression (even
a very minor improvement). The doc has not yet been updated.
This commit introduces HTTP compression using the zlib library.
http_response_forward_body has been modified to call the compression
functions.
This feature includes 3 algorithms: identity, gzip and deflate:
* identity: this is mostly for debugging, and it was useful for
developping the compression feature. With Content-Length in input, it
is making each chunk with the data available in the current buffer.
With chunks in input, it is rechunking, the output chunks will be
bigger or smaller depending of the size of the input chunk and the
size of the buffer. Identity does not apply any change on data.
* gzip: same as identity, but applying a gzip compression. The data
are deflated using the Z_NO_FLUSH flag in zlib. When there is no more
data in the input buffer, it flushes the data in the output buffer
(Z_SYNC_FLUSH). At the end of data, when it receives the last chunk in
input, or when there is no more data to read, it writes the end of
data with Z_FINISH and the ending chunk.
* deflate: same as gzip, but with deflate algorithm and zlib format.
Note that this algorithm has ambiguous support on many browsers and
no support at all from recent ones. It is strongly recommended not
to use it for anything else than experimentation.
You can't choose the compression ratio at the moment, it will be set to
Z_BEST_SPEED (1), as tests have shown very little benefit in terms of
compression ration when going above for HTML contents, at the cost of
a massive CPU impact.
Compression will be activated depending of the Accept-Encoding request
header. With identity, it does not take care of that header.
To build HAProxy with zlib support, use USE_ZLIB=1 in the make
parameters.
This work was initially started by David Du Colombier at Exceliance.
This field was used to trace precisely where a session was terminated
but it did not survive code rearchitecture and was not used at all
anymore. Let's get rid of it.
With this commit, we now separate the channel from the buffer. This will
allow us to replace buffers on the fly without touching the channel. Since
nobody is supposed to keep a reference to a buffer anymore, doing so is not
a problem and will also permit some copy-less data manipulation.
Interestingly, these changes have shown a 2% performance increase on some
workloads, probably due to a better cache placement of data.
This flag will have to be set on log tags which require transport layer
information. They will prevent the conn_xprt_close() call from releasing
the transport layer too early.
When we start logging SSL information, we need the SSL struct to be
present even past the conn_xprt_close() call. In order to achieve this,
we should use refcounting on the connection and the transport layer. At
the moment it's not worth using plain refcounting as only the logs require
this, so instead of real refcounting we just use a flag which will be set
by the log subsystem when SSL data need to be logged.
What happens then is that the xprt->close() call is ignored and the
transport layer is closed again during session_free(), after the log
line is emitted.
This callback was introduced by commit 9683e9a0 but never enabled because
the CO_FL_WAKE_DATA flag was not set. The result is that this function is
never called when an SSL handshake fails, so the connection is only closed
on timeout.
Commit 82569f91 moved the health and monitor-net checks to session.c
but a debug test introduced 0& to disable MSG_DONTWAIT in the recv()
call and this debug code remained there. Since the socket is marked
non-blocking, there should be no effect but it's dangerous to keep
such a thing here.
On Linux, accept4() does the same as accept() except that it allows
the caller to specify some flags to set on the resulting socket. We
use this to set the O_NONBLOCK flag and thus to save one fcntl()
call in each connection. The effect is a small performance gain of
around 1%.
The option is automatically enabled when target linux2628 is set, or
when the USE_ACCEPT4 Makefile variable is set. If the libc is too old
to provide the equivalent function, this is automatically detected and
our own function is used instead. In any case it is possible to force
the use of our implementation with USE_MY_ACCEPT4.
The connection layer will soon call ->wake() only when errors happen, and
not ->init(). So make the session layer use this callback to detect errors
and abort connections.
The generic data-layer init callback is now used after the transport
layer is complete and before calling the data layer recv/send callbacks.
This allows the session to switch from the embryonic session data layer
to the complete stream interface data layer, by making conn_session_complete()
the data layer's init callback.
It sill looks awkwards that the init() callback must be used opon error,
but except by adding yet another one, it does not seem to be mergeable
into another function (eg: it should probably not be merged with ->wake
to avoid unneeded calls during the handshake, though semantically that
would make sense).
We don't want to have the recv or send callbacks in embryonic
sessions, and we want the stream interface to be referenced as
the connection owner only once the session is instanciated. So
let's first have the embryonic session be the owner, then replaced
later by the stream interface once the transport layer is ready.
Instead of calling conn_notify_si() from the connection handler, we
now call data->wake(), which will allow us to use a different callback
with health checks.
Note that we still rely on a flag in order to decide whether or not
to call this function. The reason is that with embryonic sessions,
the callback is already initialized to si_conn_cb without the flag,
and we can't call the SI notify function in the leave path before
the stream interface is initialized.
This issue should be addressed by involving a different data_cb for
embryonic sessions and for stream interfaces, that would be changed
during session_complete() for the final data_cb.
While working on the changes required to make the health checks use the
new connections, it started to become obvious that some naming was not
logical at all in the connections. Specifically, it is not logical to
call the "data layer" the layer which is in charge for all the handshake
and which does not yet provide a data layer once established until a
session has allocated all the required buffers.
In fact, it's more a transport layer, which makes much more sense. The
transport layer offers a medium on which data can transit, and it offers
the functions to move these data when the upper layer requests this. And
it is the upper layer which iterates over the transport layer's functions
to move data which should be called the data layer.
The use case where it's obvious is with embryonic sessions : an incoming
SSL connection is accepted. Only the connection is allocated, not the
buffers nor stream interface, etc... The connection handles the SSL
handshake by itself. Once this handshake is complete, we can't use the
data functions because the buffers and stream interface are not there
yet. Hence we have to first call a specific function to complete the
session initialization, after which we'll be able to use the data
functions. This clearly proves that SSL here is only a transport layer
and that the stream interface constitutes the data layer.
A similar change will be performed to rename app_cb => data, but the
two could not be in the same commit for obvious reasons.
We were having several different behaviours with monitor-net and
"mode health" :
- monitor-net on TCP connections was evaluated just after accept(),
did not count a connection on the frontend and were not subject
to tcp-request connection rules, and caused an immediate close().
- monitor-net in HTTP mode was evaluated once the session was
accepted (eg: on top of SSL), returned "HTTP/1.0 200 OK\r\n\r\n"
over the connection's data layer and instanciated a session which
was responsible for closing this connection. A connection AND a
session were counted for the frontend ;
- "mode health" with "option httpchk" would do exactly the same as
monitor-net in HTTP mode ;
- "mode health" without "option httpchk" would do the same as above
except that "OK" was returned instead of "HTTP/1.0 200 OK\r\n\r\n".
None of them took care of cleaning the input buffer, sometimes resulting
in a TCP reset to be emitted after the last packet if a request was received
over the connection.
Given the inconsistencies and the complexity in keeping all these features
handled at the right position, we now slightly changed the way they are
handled :
- all of them are handled just after the "tcp-request connection" rules,
so that all of them may be blocked using such rules, offering more
flexibility and consistency ;
- no connection handshake is performed anymore for non-TCP modes
- all of them send the response as raw data over the socket, there is no
more difference between TCP and HTTP mode for example (these rules were
never meant to be served over SSL connections and were never documented
as able to do that).
- any possible pending data on the incoming socket is drained before the
response is sent, in order to avoid the risk of a reset.
- none of them exactly did what was documented !
This results in more consistent, more flexible and more accurate handling of
monitor rules, with smaller and more robust code.
It appears that fd.h includes a number of unneeded files and was
included from standard.h, and as such served as an intermediary
to provide almost everything to everyone.
By removing its useless includes, a long dependency chain broke
but could easily be fixed.
These flags were added for TCP_CORK. They were only set at various places
but never checked by any user since TCP_CORK was replaced with MSG_MORE.
Simply get rid of this now.
The PROXY protocol is now decoded in the connection before other
handshakes. This means that it may be extracted from a TCP stream
before SSL is decoded from this stream.