This bug was introduced with peers.c code re-work (7d0ceeec80):
"struct peer" flags are mistakenly checked instead of
"struct peers" flags to check the resync status of the local peer.
The issue was reported here:
https://github.com/haproxy/haproxy/issues/545
This bug affects all branches >= 2.0 and should be backported.
This is the replacement of failed attempt to add thread safety and
per-process sequences of random numbers initally tried with commit
1c306aa84d ("BUG/MEDIUM: random: implement per-thread and per-process
random sequences").
This new version takes a completely different approach and doesn't try
to work around the horrible OS-specific and non-portable random API
anymore. Instead it implements "xoroshiro128**", a reputedly high
quality random number generator, which is one of the many variants of
xorshift, which passes all quality tests and which is described here:
http://prng.di.unimi.it/
While not cryptographically secure, it is fast and features a 2^128-1
period. It supports fast jumps allowing to cut the period into smaller
non-overlapping sequences, which we use here to support up to 2^32
processes each having their own, non-overlapping sequence of 2^96
numbers (~7*10^28). This is enough to provide 1 billion randoms per
second and per process for 2200 billion years.
The implementation was made thread-safe either by using a double 64-bit
CAS on platforms supporting it (x86_64, aarch64) or by using a local
lock for the time needed to perform the shift operations. This ensures
that all threads pick numbers from the same pool so that it is not
needed to assign per-thread ranges. For processes we use the fast jump
method to advance the sequence by 2^96 for each process.
Before this patch, the following config:
global
nbproc 8
frontend f
bind :4445
mode http
log stdout format raw daemon
log-format "%[uuid] %pid"
redirect location /
Would produce this output:
a4d0ad64-2645-4b74-b894-48acce0669af 12987
a4d0ad64-2645-4b74-b894-48acce0669af 12992
a4d0ad64-2645-4b74-b894-48acce0669af 12986
a4d0ad64-2645-4b74-b894-48acce0669af 12988
a4d0ad64-2645-4b74-b894-48acce0669af 12991
a4d0ad64-2645-4b74-b894-48acce0669af 12989
a4d0ad64-2645-4b74-b894-48acce0669af 12990
82d5f6cd-f6c1-4f85-a89c-36ae85d26fb9 12987
82d5f6cd-f6c1-4f85-a89c-36ae85d26fb9 12992
82d5f6cd-f6c1-4f85-a89c-36ae85d26fb9 12986
(...)
And now produces:
f94b29b3-da74-4e03-a0c5-a532c635bad9 13011
47470c02-4862-4c33-80e7-a952899570e5 13014
86332123-539a-47bf-853f-8c8ea8b2a2b5 13013
8f9efa99-3143-47b2-83cf-d618c8dea711 13012
3cc0f5c7-d790-496b-8d39-bec77647af5b 13015
3ec64915-8f95-4374-9e66-e777dc8791e0 13009
0f9bf894-dcde-408c-b094-6e0bb3255452 13011
49c7bfde-3ffb-40e9-9a8d-8084d650ed8f 13014
e23f6f2e-35c5-4433-a294-b790ab902653 13012
There are multiple benefits to using this method. First, it doesn't
depend anymore on a non-portable API. Second it's thread safe. Third it
is fast and more proven than any hack we could attempt to try to work
around the deficiencies of the various implementations around.
This commit depends on previous patches "MINOR: tools: add 64-bit rotate
operators" and "BUG/MEDIUM: random: initialize the random pool a bit
better", all of which will need to be backported at least as far as
version 2.0. It doesn't require to backport the build fixes for circular
include files dependecy anymore.
This reverts commit 1c306aa84d.
It breaks the build on all non-glibc platforms. I got confused by the
man page (which possibly is the most confusing man page I've ever read
about a standard libc function) and mistakenly understood that random_r
was portable, especially since it appears in latest freebsd source as
well but not in released versions, and with a slightly different API :-/
We need to find a different solution with a fallback. Among the
possibilities, we may reintroduce this one with a fallback relying on
locking around the standard functions, keeping fingers crossed for no
other library function to call them in parallel, or we may also provide
our own PRNG, which is not necessarily more difficult than working
around the totally broken up design of the portable API.
As mentioned in previous patch, the random number generator was never
made thread-safe, which used not to be a problem for health checks
spreading, until the uuid sample fetch function appeared. Currently
it is possible for two threads or processes to produce exactly the
same UUID. In fact it's extremely likely that this will happen for
processes, as can be seen with this config:
global
nbproc 8
frontend f
bind :4445
mode http
log stdout daemon format raw
log-format "%[uuid] %pid"
redirect location /
It typically produces this log:
551ce567-0bfb-4bbd-9b58-cdc7e9365325 30645
551ce567-0bfb-4bbd-9b58-cdc7e9365325 30641
551ce567-0bfb-4bbd-9b58-cdc7e9365325 30644
551ce567-0bfb-4bbd-9b58-cdc7e9365325 30639
551ce567-0bfb-4bbd-9b58-cdc7e9365325 30646
07764439-c24d-4e6f-a5a6-0138be59e7a8 30645
07764439-c24d-4e6f-a5a6-0138be59e7a8 30639
551ce567-0bfb-4bbd-9b58-cdc7e9365325 30643
07764439-c24d-4e6f-a5a6-0138be59e7a8 30646
b6773fdd-678f-4d04-96f2-4fb11ad15d6b 30646
551ce567-0bfb-4bbd-9b58-cdc7e9365325 30642
07764439-c24d-4e6f-a5a6-0138be59e7a8 30642
What this patch does is to use a distinct per-thread and per-process
seed to make sure the same sequences will not appear, and will then
extend these seeds by "burning" a number of randoms that depends on
the global random seed, the thread ID and the process ID. This adds
roughly 20 extra bits of randomness, resulting in 52 bits total per
thread and per process.
It only takes a few milliseconds to burn these randoms and given
that threads start with a different seed, we know they will not
catch each other. So these random extra bits are essentially added
to ensure randomness between boots and cluster instances.
This replaces all uses of random() with ha_random() which uses the
thread-local state.
This must be backported as far as 2.0 or any version having the
UUID sample-fetch function since it's the main victim here.
It's important to note that this patch, in addition to depending on
the previous one "BUG/MEDIUM: init: initialize the random pool a bit
better", also depends on the preceeding build fixes to address a
circular dependency issue in the include files that prevented it
from building. Part or all of these patches may need to be backported
or adapted as well.
The function was added in commit 6c39198b57,
but was also used within a single function `free_dcache` which was unused
itself.
see issue #301
see commit 10ce0c2f31 which removed
`free_dcache`
The function was changed to be static in commit
6c39198b57, but even that commit
no longer uses it. The purpose of the change vs. outright removal
is unclear.
see issue #301
The peer flags (->flags member of peer struct) are reset by __peer_session_deinit()
function. PEER_F_ALIVE flag which is used by the heartbeat part of the peer protocol
to mark a peer as being alive was not reset by this function. This simple patch adds
add the statement to this.
Note that, at this time, there was no identified issue due to this missing reset.
Must be backported to 2.0.
As the peers protocol expects to parse at least one encoded integer value for
each stick-table data field even when not configured on the local side,
about the "server_name" data field we must emit something even if it has
not been set (no server was configured for instance).
As this data field is made of first one encoded integer which is the length
of the remaining data (the dictionary cache entry), we encode the length 0
when emitting such an absent dictionary cache entry.
On the remote side, when we decode such an integer with 0 as value, we stop
parsing the data field and that's it.
Must be backported to 2.0.
This patch adds three counters to help in debugging peers protocol issues
to "peer" struct:
->no_hbt counts the number of reconnection period without receiving heartbeat
->new_conn counts the number of reconnections after ->reconnect timeout expirations.
->proto_err counts the number of protocol errors.
Add RX/TX heartbeat counters to "peer" struct to have an idead about which
peer is alive or not.
Dump these counters values on the CLI via "show peers" command.
This patch enable us to dump the stick-table information of remote or local peers
without already opened peer session. This may be the case also for the local peer
during synchronizations with an old processus (reload).
There were 221 places where a status message or an error message were built
to be returned on the CLI. All of them were replaced to use cli_err(),
cli_msg(), cli_dynerr() or cli_dynmsg() depending on what was expected.
This removed a lot of duplicated code because most of the times, 4 lines
are replaced by a single, safer one.
When forcing the outgoing address of a connection, till now we used to
allocate this outgoing connection and set the address into it, then set
SF_ADDR_SET. With connection reuse this causes a whole lot of issues and
difficulties in the code.
Thanks to the previous changes, it is now possible to store the target
address into the stream instead, and copy the address from the stream to
the connection when initializing the connection. assign_server_address()
does this and as a result SF_ADDR_SET now reflects the presence of the
target address in the stream, not in the connection. The http_proxy mode,
the peers and the master's CLI now use the same mechanism. For now the
existing connection code was not removed to limit the amount of tricky
changes, but the allocated connection is not used anymore.
This change also revealed a latent issue that we've been having around
option http_proxy : the address was set in the connection but neither the
SF_ADDR_SET nor the SF_ASSIGNED flags were set. It looks like the connection
could establish only due to the fact that it existed with a non-null
destination address.
This commit places calls to sockaddr_alloc() at the places where an address
is needed, and makes sure that the allocation is properly tested. This does
not add too many error paths since connection allocations are already in the
vicinity and share the same error paths. For the two cases where a
clear_addr() was called, instead the address was not allocated.
The target address is duplicated from the peer's configured one. For
now we keep the target address as-is but we'll have to dynamically
allocate it and place it into the stream instead. Maybe a sockaddr_dup()
will help by the way.
The "show peers" part is safe as it's already called after checking
the addresses' validity.
The stream outputs requires to retrieve connections sources and
destinations. The previous call involving conn_get_{to,from}_addr()
was missing a status check which has now been integrated with the
new call since these places already handle connection errors there.
The same code parts were reused for "show peers" and were modified
similarly.
First of all, all legacy HTTP analyzers and all functions exclusively used by
them were removed. So the most of the functions in proto_http.{c,h} were
removed. Only functions to deal with the HTTP transaction have been kept. Then,
http_msg and hdr_idx modules were entirely removed. And finally the structure
http_msg was lightened of all its useless information about the legacy HTTP. The
structure hdr_ctx was also removed because unused now, just like unused states
in the enum h1_state. Note that the memory pool "hdr_idx" was removed and
"http_txn" is now smaller.
When we look up an dictionary entry in the cache used upon transmission
we store the last result in ->prev_lookup of struct dcache_tx so that
to compare it with the subsequent entries to look up and save performances.
When a server name is cached we only send its cache entry ID which has
an encoded length of 1 (because smaller than PEER_ENC_2BYTES_MIN).
So, in this case we only have to encode 1, the already known encoded length
of this ID before encoding it.
Furthermore we do not have to call strlen() to compute the lengths of server
name strings thanks to this commit: "MINOR: dict: Store the length of the
dictionary entries".
We store pointers to server names dictionary entries in a pre-allocated array of
ebpt_node's (->entries member of struct dcache_tx) to cache those sent to remote
peers. Consequently the ID used to identify the server name dictionary entry is
also used as index for this array. There is no need to implement a lookup by key
for this dictionary cache.
Just got this one :
src/peers.c:528:13: warning: missing braces around initializer [-Wmissing-braces]
src/peers.c:528:13: warning: (near initialization for 'cde.key') [-Wmissing-braces]
Indeed, this struct contains two structs so scalar zero is not a valid
value for the first field. Let's just leave it as an empty struct since
it was the purpose.
This commit was not complete:
BUG/MINOR: peers: Wrong "server_name" decoding.
We forgot forgotten to move forward <msg_cur> pointer variable after
having parse the server name string.
Again this bug may happen only if we add stick-table new data type after
the server name which is the current last one. Furthermore this bug is
visible only the first time a peer sends a server name for a stick-table
entry.
Nothing to backport.
This patch fixes a bug which does not occur at this time because the "server_name"
stick-table data type is the last one (see STKTABLE_DT_SERVER_NAME). It was introduced
by this commit: "MINOR: peers: Make peers protocol support new "server_name" data type".
Indeed when receiving STD_T_DICT stick-table data type we first decode the length
of these data, then we decode the ID of this dictionary entry. To know if there
is remaining data to parse, we check if we have reached the end of the current data,
relying on <msg_end> variable. But <msg_end> is at the end of the entire message!
So this patch computes the correct end of the current STD_T_DICT before doing
anything else with it.
Nothing to backport.
With this patch we define macros for the minimum values which are
encoded for 2 up to 10 bytes. This latter is big enough to encode
UINT64_MAX. We replaced at several places 240 value by PEER_ENC_2BYTES_MIN
which is the minimum value which is encoded with 2 bytes. The peer protocol
encoding consisting in encoding with only one byte a value which is
less than PEER_ENC_2BYTES_MIN and with at least 2 bytes a 64-bits value greater
than PEER_ENC_2BYTES_MIN.
Make usage of the APIs implemented for dictionaries (dict.c) and their LRU caches (struct dcache)
so that to send/receive server names used for the server by name stickiness. These
names are sent over the network as follows:
- in every case we send the encode length of the data (STD_T_DICT), then
- if the server names is not present in the cache used upon transmission (struct dcache_tx)
we cache it and we the ID of this TX cache entry followed the encode length of the
server name, and finally the sever name itseft (non NULL terminated string).
- if the server name is present, we repead these operations but we only send the TX cache
entry ID.
Upon receipt, the couple of (cache IDs, server name) are stored the LRU cache used
only upon receipt (struct dcache_rx). As the peers protocol is symetrical, the fact
that the server name is present in the received data (resp. or not) denotes if
the entry is absent (resp. or not).
We want to send some stick-table data fields stored as strings in dictionaries
without consuming too much memory and CPU. To do so we implement with this patch
a cache for send/received dictionaries entries. These dictionary of strings entries are
stored in others real dictionary entries with an identifier as key (unsigned int)
and a pointer to the dictionary of strings entries as values.
When creating this patch "CLEANUP: peers: Replace hard-coded values by macros",
we realized there was a remaining place in peer_prepare_updatemsg() where the maximum
of an encoded length harcoded value could be replaced by PEER_MSG_ENCODED_LENGTH_MAXLEN
macro. But in this case, the 1 harcoded value for the header length is wrong. Should
be 2 or PEER_MSG_HEADER_LEN. So, there is a missing byte to encode the length of
remaining data after the header.
Note that the bug was never encountered because even with a missing byte, we could
encode a maximum length which would be (1<<25) (32MB) according to the following
extract of the peers protocol documentation which were from far a never reached limit
I guess:
I) Encoded Integer and Bitfield.
0 <= X < 240 : 1 byte (7.875 bits) [ XXXX XXXX ]
240 <= X < 2288 : 2 bytes (11 bits) [ 1111 XXXX ] [ 0XXX XXXX ]
2288 <= X < 264432 : 3 bytes (18 bits) [ 1111 XXXX ] [ 1XXX XXXX ] [ 0XXX XXXX ]
264432 <= X < 33818864 : 4 bytes (25 bits) [ 1111 XXXX ] [ 1XXX XXXX ]*2 [ 0XXX XXXX ]
33818864 <= X < 4328786160 : 5 bytes (32 bits) [ 1111 XXXX ] [ 1XXX XXXX ]*3 [ 0XXX XXXX ]
All the peer stick-table messages are made of a 2-byte header (PEER_MSG_HEADER_LEN)
followed by the encoded length of the remaining data wich is harcoded as 5 (in bytes)
for the maximum (PEER_MSG_ENCODED_LENGTH_MAXLEN). With such a length we can encode
a maximum length which equals to (1 << 32) - 1, which is from far enough.
This patches replaces both these values by macros where applicable.
This commit "MINOR: stick-table: Add prefixes to stick-table names"
prepended the "peers" section name to stick-table names declared in such "peers"
sections followed by a '/' character. This is not this name which must be sent
over the network to avoid collisions with stick-table name declared as backends.
As the '/' character is forbidden as first character of a backend name, we prefix
the stick-table names declared in peers sections only with a '/' character.
With such declarations:
peers mypeers
table t1
backend t1
stick-table ... peers mypeers
at peer protocol level, "t1" declared as stick-table in "mypeers" section is different
of "t1" stick-table declared as backend.
In src/peers.c, only two modifications were required: use ->nid stktable struct
member in place of ->id in peer_prepare_switchmsg() to prepare the stick-table
definition messages. Same thing in peer_treat_definemsg() to treat a stick-table
definition messages.
This patch adds a counter of calls on the orchestator peers task
and a counter on the tasks linked to applet i/o handler for
each peer.
Those two counters are useful to detect if a peer sync is active
or frozen.
This patch is related to the commit:
"MINOR: peers: Add a new command to the CLI for peers."
and should be backported with it.
task_delete() was never used without calling task_free() just after, and
task_free() was only used on error pathes to destroy a just-created task,
so merge them into task_destroy(), that will remove the task from the
wait queue, and make sure the task is either destroyed immediately if it's
not in the run queue, or destroyed when it's supposed to run.
Implements "show peers [peers section]" new CLI command to dump information
about the peers and their stick-tables to be synchronized and others internal.
May be backported as far as 1.5.
The deinit took place in only peer_session_release, but in the a case of a
previous call to peer_session_forceshutdown, the session cursors
won't be reset, resulting in a bad state for new session of the same
peer. For instance, a table definition message could be dropped and
so all update messages will be dropped by the remote peer.
This patch move the deinit processing directly in the force shutdown
funtion. Killed session remains in "ST_END" state but ref on peer was
reset to NULL and deinit will be skipped on session release function.
The session release continue to assure the deinit for "active" sessions.
This patch should be backported on all stable version since proto
peers v2.
This patch fixes a bug introduced by 045e0d4 commit where it was really a bad
idea to reset the peer applet context before shutting down the underlying
session. This had as side effect to cancel the re-initializations done by
peer_session_release(), especially prevented this function from re-initializing
the current table pointer which is there to force annoucement of stick-table
definitions on when reconnecting. Consequently the peers could send stick-table
update messages without a first stick-table definition message. As this is
forbidden, this leaded the remote peers to close the sessions.
There were tabs in between macro names and their values in their
definition, forcing everyone to do the same, and causing some
mangling in patches. Let's fix all this.
645635d commit was not sufficient to implement the heartbeat feature.
When no heartbeat was received before its timeout has expired the session was not
closed due to the fact that process_peer_sync() which is the task responsible of
handling the heartbeat and session expirations only checked the heartbeat timeout,
and sent a heartbeat message if it has expired. This has as side
effect to leave the session opened. On the remote side, a peer which receives a
heartbeat message, even if not supported, does not close the session.
Furthermore it not sufficient to update ->reconnect peer member field to schedule
a peer session release.
With this patch, a peer is flagged as alive as soon as it received peer protocol
messages (and not only heartbeat messages). When no updates must be sent,
we first check the reconnection timeout (->reconnect peer member field). If expired,
we really shutdown the session if the peer is not alive, but if the peer seen as alive,
we reset this flag and update the ->reconnect for the next period.
If the reconnection timeout has not expired, then we check the heartbeat timeout
which is there only to emit heartbeat messages upon expirations. If expired, as before this
patch we increment the heartbeat timeout by 3s to schedule the next heartbeat message
then we emit a heartbeat message waking up the peer I/O handler.
In every cases we update the task expiration to the earlier time between the
reconnection time and the heartbeat timeout time so that to be sure to check
again these two ->reconnect and ->heartbeat timers.
This patch implements peer heartbeat feature to prevent any haproxy peer
from reconnecting too often, consuming sockets for nothing.
To do so, we add PEER_MSG_CTRL_HEARTBEAT new message to PEER_MSG_CLASS_CONTROL peers
control class of messages. A ->heartbeat field is added to peer structs
to store the heatbeat timeout value which is handled by the same function as for ->reconnect
to control the session timeouts. A 2-bytes heartbeat message is sent every 3s when
no updates have to be sent. This way, the peer which receives such a message is sure
the remote peer is still alive. So, it resets the ->reconnect peer session
timeout to its initial value (5s). This prevents any reconnection to an
already connected alive peer.
It's pointless to always set and maintain l->maxconn because the accept
loop already enforces the frontend's limit anyway. Thus let's stop setting
this value by default and keep it to zero meaning "no limit". This way the
frontend's maxconn will be used by default. Of course if a value is set,
it will be enforced.
intencode() tests for the nullity of the target pointer passed in
argument, but the code calling intencode() never does so and happily
dereferences it. gcc at -O3 detects this as a potential null deref.
Let's remove this incorrect and misleading test. If this pointer was
null, the code would already crash in the calling functions.
This must be backported to stable versions.
A new warning appears when building at -O0 since commit 3f0fb9df6 ("MINOR:
peers: move "hello" message treatment code to reduce the size of the I/O
handler."), it is related to the fact that proto_len is initialized from
strlen() which is not a constant. Let's replace it with sizeof-1 instead
and also mark the variable as static since it's useless outside of the file.
The error handling code was extremely repetitive and error-prone due
to the numerous copy-pastes, some involving unlocks or free. Let's
factor this out. The code could be further simplified, but 12 locations
were already cleaned without taking risks.