Depending on the content-types and accept-encoding fields, some responses
might or might not be compressed. Let's have a counter of the number of
compressed responses and report it in the stats to help improve compression
usage.
Some cosmetic issues were fixed in the CSV output too (missing commas at the
end).
Several places got the connection close sequence wrong because it
was not obvious. In practice we always need the same sequence when
aborting, so let's have a common function for this.
There was a possible memory leak in the zlib code when the first response of
a keep-alive session was compressed, because the next request would reset the
compression algo, preventing a later call to session_free() from releasing it.
The reason is that it is necessary to release the assigned resources in
http_end_txn_clean_session().
Instead of storing a couple of (int, ptr) in the struct connection
and the struct session, we use a different method : we only store a
pointer to an integer which is stored inside the target object and
which contains a unique type identifier. That way, the pointer allows
us to retrieve the object type (by dereferencing it) and the object's
address (by computing the displacement in the target structure). The
NULL pointer always corresponds to OBJ_TYPE_NONE.
This reduces the size of the connection and session structs. It also
simplifies target assignment and compare.
In order to improve the generated code, we try to put the obj_type
element at the beginning of all the structs (listener, server, proxy,
si_applet), so that the original and target pointers are always equal.
A lot of code was touched by massive replaces, but the changes are not
that important.
Hijackers were functions designed to inject data into channels in the
distant past. They became unused around 1.3.16, and since there has
not been any user of this mechanism to date, it's uncertain whether
the mechanism still works (and it's not really useful anymore). So
better remove it as well as the pointer it uses in the channel struct.
si_fd() is not used a lot, and breaks builds on OpenBSD 5.2 which
defines this name for its own purpose. It's easy enough to remove
this one-liner function, so let's do it.
There is a small waste of CPU cycles when no handshake is required on an
accepted connection, because we had to perform one call to conn_fd_handler()
to mark the connection CONNECTED and to call process_session() again to say
that nothing happened.
By marking the connection CONNECTED when there is no pending handshake, we
avoid this extra call to process_session().
Having a global expiration timer for a task means that the tasks are regularly
woken up (at least after each expiration timer). It's totally useless and counter
productive to process the whole session upon each such wakeup, and it's fairly
easy to detect such wakeups, so let's just update the task's timer and return
to sleep when this happens.
For 100k concurrent connections with 10s of timeouts, this can save 10k wakeups
per second, which is not bad.
With extra-large buffers, it is possible that a lot of data are sent upon
connection establishment before the session is notified. The issue is how
to handle a send() error after some data were actually sent.
At the moment, only a connection error is reported, causing a new connection
attempt and send() to restart after the last data. We absolutely don't want
to retry the connect() if at least one byte was sent, because those data are
lost.
The solution consists in reporting exactly what happens, which is :
- a successful connection attempt
- a read/write error on the channel
That way we go on with sess_establish(), the response analysers are called
and report the appropriate connection state for the error (typically a server
abort while waiting for a response). This mechanism also guarantees that we
won't retry since it's a success. The logs also report the correct connect
time.
Note that 1.4 is not directly affected because it only attempts one send(),
so it cannot detect a send() failure here and distinguish it form a failed
connection attempt. So no backport is needed. Also, this is just a safe belt
we're taking, since this issue should not happen anymore since previous commit.
The trash is used everywhere to store the results of temporary strings
built out of s(n)printf, or as a storage for a chunk when chunks are
needed.
Using global.tune.bufsize is not the most convenient thing either.
So let's replace trash with a chunk and directly use it as such. We can
then use trash.size as the natural way to get its size, and get rid of
many intermediary chunks that were previously used.
The patch is huge because it touches many areas but it makes the code
a lot more clear and even outlines places where trash was used without
being that obvious.
We will need to be able to switch server connections on a session and
to keep idle connections. In order to achieve this, the preliminary
requirement is that the connections can survive the session and be
detached from them.
Right now they're still allocated at exactly the same place, so when
there is a session, there are always 2 connections. We could soon
improve on this by allocating the outgoing connection only during a
connect().
This current patch touches a lot of code and intentionally does not
change any functionnality. Performance tests show no regression (even
a very minor improvement). The doc has not yet been updated.
This commit introduces HTTP compression using the zlib library.
http_response_forward_body has been modified to call the compression
functions.
This feature includes 3 algorithms: identity, gzip and deflate:
* identity: this is mostly for debugging, and it was useful for
developping the compression feature. With Content-Length in input, it
is making each chunk with the data available in the current buffer.
With chunks in input, it is rechunking, the output chunks will be
bigger or smaller depending of the size of the input chunk and the
size of the buffer. Identity does not apply any change on data.
* gzip: same as identity, but applying a gzip compression. The data
are deflated using the Z_NO_FLUSH flag in zlib. When there is no more
data in the input buffer, it flushes the data in the output buffer
(Z_SYNC_FLUSH). At the end of data, when it receives the last chunk in
input, or when there is no more data to read, it writes the end of
data with Z_FINISH and the ending chunk.
* deflate: same as gzip, but with deflate algorithm and zlib format.
Note that this algorithm has ambiguous support on many browsers and
no support at all from recent ones. It is strongly recommended not
to use it for anything else than experimentation.
You can't choose the compression ratio at the moment, it will be set to
Z_BEST_SPEED (1), as tests have shown very little benefit in terms of
compression ration when going above for HTML contents, at the cost of
a massive CPU impact.
Compression will be activated depending of the Accept-Encoding request
header. With identity, it does not take care of that header.
To build HAProxy with zlib support, use USE_ZLIB=1 in the make
parameters.
This work was initially started by David Du Colombier at Exceliance.
This field was used to trace precisely where a session was terminated
but it did not survive code rearchitecture and was not used at all
anymore. Let's get rid of it.
With this commit, we now separate the channel from the buffer. This will
allow us to replace buffers on the fly without touching the channel. Since
nobody is supposed to keep a reference to a buffer anymore, doing so is not
a problem and will also permit some copy-less data manipulation.
Interestingly, these changes have shown a 2% performance increase on some
workloads, probably due to a better cache placement of data.
This flag will have to be set on log tags which require transport layer
information. They will prevent the conn_xprt_close() call from releasing
the transport layer too early.
When we start logging SSL information, we need the SSL struct to be
present even past the conn_xprt_close() call. In order to achieve this,
we should use refcounting on the connection and the transport layer. At
the moment it's not worth using plain refcounting as only the logs require
this, so instead of real refcounting we just use a flag which will be set
by the log subsystem when SSL data need to be logged.
What happens then is that the xprt->close() call is ignored and the
transport layer is closed again during session_free(), after the log
line is emitted.
This callback was introduced by commit 9683e9a0 but never enabled because
the CO_FL_WAKE_DATA flag was not set. The result is that this function is
never called when an SSL handshake fails, so the connection is only closed
on timeout.
Commit 82569f91 moved the health and monitor-net checks to session.c
but a debug test introduced 0& to disable MSG_DONTWAIT in the recv()
call and this debug code remained there. Since the socket is marked
non-blocking, there should be no effect but it's dangerous to keep
such a thing here.
On Linux, accept4() does the same as accept() except that it allows
the caller to specify some flags to set on the resulting socket. We
use this to set the O_NONBLOCK flag and thus to save one fcntl()
call in each connection. The effect is a small performance gain of
around 1%.
The option is automatically enabled when target linux2628 is set, or
when the USE_ACCEPT4 Makefile variable is set. If the libc is too old
to provide the equivalent function, this is automatically detected and
our own function is used instead. In any case it is possible to force
the use of our implementation with USE_MY_ACCEPT4.
The connection layer will soon call ->wake() only when errors happen, and
not ->init(). So make the session layer use this callback to detect errors
and abort connections.
The generic data-layer init callback is now used after the transport
layer is complete and before calling the data layer recv/send callbacks.
This allows the session to switch from the embryonic session data layer
to the complete stream interface data layer, by making conn_session_complete()
the data layer's init callback.
It sill looks awkwards that the init() callback must be used opon error,
but except by adding yet another one, it does not seem to be mergeable
into another function (eg: it should probably not be merged with ->wake
to avoid unneeded calls during the handshake, though semantically that
would make sense).
We don't want to have the recv or send callbacks in embryonic
sessions, and we want the stream interface to be referenced as
the connection owner only once the session is instanciated. So
let's first have the embryonic session be the owner, then replaced
later by the stream interface once the transport layer is ready.
Instead of calling conn_notify_si() from the connection handler, we
now call data->wake(), which will allow us to use a different callback
with health checks.
Note that we still rely on a flag in order to decide whether or not
to call this function. The reason is that with embryonic sessions,
the callback is already initialized to si_conn_cb without the flag,
and we can't call the SI notify function in the leave path before
the stream interface is initialized.
This issue should be addressed by involving a different data_cb for
embryonic sessions and for stream interfaces, that would be changed
during session_complete() for the final data_cb.
While working on the changes required to make the health checks use the
new connections, it started to become obvious that some naming was not
logical at all in the connections. Specifically, it is not logical to
call the "data layer" the layer which is in charge for all the handshake
and which does not yet provide a data layer once established until a
session has allocated all the required buffers.
In fact, it's more a transport layer, which makes much more sense. The
transport layer offers a medium on which data can transit, and it offers
the functions to move these data when the upper layer requests this. And
it is the upper layer which iterates over the transport layer's functions
to move data which should be called the data layer.
The use case where it's obvious is with embryonic sessions : an incoming
SSL connection is accepted. Only the connection is allocated, not the
buffers nor stream interface, etc... The connection handles the SSL
handshake by itself. Once this handshake is complete, we can't use the
data functions because the buffers and stream interface are not there
yet. Hence we have to first call a specific function to complete the
session initialization, after which we'll be able to use the data
functions. This clearly proves that SSL here is only a transport layer
and that the stream interface constitutes the data layer.
A similar change will be performed to rename app_cb => data, but the
two could not be in the same commit for obvious reasons.
We were having several different behaviours with monitor-net and
"mode health" :
- monitor-net on TCP connections was evaluated just after accept(),
did not count a connection on the frontend and were not subject
to tcp-request connection rules, and caused an immediate close().
- monitor-net in HTTP mode was evaluated once the session was
accepted (eg: on top of SSL), returned "HTTP/1.0 200 OK\r\n\r\n"
over the connection's data layer and instanciated a session which
was responsible for closing this connection. A connection AND a
session were counted for the frontend ;
- "mode health" with "option httpchk" would do exactly the same as
monitor-net in HTTP mode ;
- "mode health" without "option httpchk" would do the same as above
except that "OK" was returned instead of "HTTP/1.0 200 OK\r\n\r\n".
None of them took care of cleaning the input buffer, sometimes resulting
in a TCP reset to be emitted after the last packet if a request was received
over the connection.
Given the inconsistencies and the complexity in keeping all these features
handled at the right position, we now slightly changed the way they are
handled :
- all of them are handled just after the "tcp-request connection" rules,
so that all of them may be blocked using such rules, offering more
flexibility and consistency ;
- no connection handshake is performed anymore for non-TCP modes
- all of them send the response as raw data over the socket, there is no
more difference between TCP and HTTP mode for example (these rules were
never meant to be served over SSL connections and were never documented
as able to do that).
- any possible pending data on the incoming socket is drained before the
response is sent, in order to avoid the risk of a reset.
- none of them exactly did what was documented !
This results in more consistent, more flexible and more accurate handling of
monitor rules, with smaller and more robust code.
It appears that fd.h includes a number of unneeded files and was
included from standard.h, and as such served as an intermediary
to provide almost everything to everyone.
By removing its useless includes, a long dependency chain broke
but could easily be fixed.
These flags were added for TCP_CORK. They were only set at various places
but never checked by any user since TCP_CORK was replaced with MSG_MORE.
Simply get rid of this now.
The PROXY protocol is now decoded in the connection before other
handshakes. This means that it may be extracted from a TCP stream
before SSL is decoded from this stream.
When an incoming connection request is accepted, a connection
structure is needed to store its state. However we don't want to
fully initialize a session until the data layer is about to be
ready.
As long as the connection is physically stored into the session,
it's not easy to split both allocations.
As such, we only initialize the minimum requirements of a session,
which results in what we call an embryonic session. Then once the
data layer is ready, we can complete the function's initialization.
Doing so avoids buffers allocation and ensures that a session only
sees ready connections.
The frontend's client timeout is used as the handshake timeout. It
is likely that another timeout will be used in the future.
SSL need to initialize the data layer before proceeding with data. At
the moment, this data layer is automatically initialized from itself,
which will not be possible once we extract connection from sessions
since we'll only create the data layer once the handshake is finished.
So let's have the application layer initialize the data layer before
using it.
Make it more obvious that this function does not depend on any knowledge
of the session. This is important to plan for TCP rules that can run on
connection without any initialized session yet.
These ones are implicitly handled by the connection's data layer, no need
to rely on them anymore and reaching them maintains undesired dependences
on stream-interface.
We need to have the source and destination addresses in the connection.
They were lying in the stream interface so let's move them. The flags
SI_FL_FROM_SET and SI_FL_TO_SET have been moved as well.
It's worth noting that tcp_connect_server() almost does not use the
stream interface anymore except for a few flags.
It has been identified that once we detach the connection from the SI,
it will probably be needed to keep a copy of the server-side addresses
in the SI just for logging purposes. This has not been implemented right
now though.
This is a massive rename of most functions which should make use of the
word "channel" instead of the word "buffer" in their names.
In concerns the following ones (new names) :
unsigned long long channel_forward(struct channel *buf, unsigned long long bytes);
static inline void channel_init(struct channel *buf)
static inline int channel_input_closed(struct channel *buf)
static inline int channel_output_closed(struct channel *buf)
static inline void channel_check_timeouts(struct channel *b)
static inline void channel_erase(struct channel *buf)
static inline void channel_shutr_now(struct channel *buf)
static inline void channel_shutw_now(struct channel *buf)
static inline void channel_abort(struct channel *buf)
static inline void channel_stop_hijacker(struct channel *buf)
static inline void channel_auto_connect(struct channel *buf)
static inline void channel_dont_connect(struct channel *buf)
static inline void channel_auto_close(struct channel *buf)
static inline void channel_dont_close(struct channel *buf)
static inline void channel_auto_read(struct channel *buf)
static inline void channel_dont_read(struct channel *buf)
unsigned long long channel_forward(struct channel *buf, unsigned long long bytes)
Some functions provided by channel.[ch] have kept their "buffer" name because
they are really designed to act on the buffer according to some information
gathered from the channel. They have been moved together to the same place in
the file for better readability but they were not changed at all.
The "buffer" memory pool was also renamed "channel".
Get rid of these confusing BF_* flags. Now channel naming should clearly
be used everywhere appropriate.
No code was changed, only a renaming was performed. The comments about
channel operations was updated.
This flag is quite complex to get right and updating it everywhere is a
major pain, especially since the buffer/channel split. This is the first
step of getting rid of it. Instead now it's dynamically computed whenever
needed.
This flag was very problematic because it was composite in that both changes
to the pipe or to the buffer had to cause this flag to be updated, which is
not always simple (eg: there may not even be a channel attached to a buffer
at all).
There were not that many users of this flags, mostly setters. So the flag got
replaced with a macro which reports whether the channel is empty or not, by
checking both the pipe and the buffer.
One part of the change is sensible : the flag was also part of BF_MASK_STATIC,
which is used by process_session() to rescan all analysers in case the flag's
status changes. At first glance, none of the analysers seems to change its
mind base on this flag when it is subject to change, so it seems fine not to
add variation checks here. Otherwise it's possible that checking the buffer's
output size is more useful than checking the flag's replacement.