pat_ref_gen_delete(ref, gen_id, key) tries to delete all samples belonging
to <gen_id> and matching <key> under <ref>
The goal is to be able to target a single subset from <ref>
pat_ref_gen_find_elt(ref, gen_id, key) tries to find <elt> element
belonging to <gen_id> and matching <key> in <ref> reference.
The goal is to be able to target a single subset from <ref>
pat_ref_gen_set(ref, gen_id, value, err) modifies to <value> the sample
of all patterns matching <key> and belonging to <gen_id> (generation id)
under <ref>
The goal is to be able to target a single subset from <ref>
split pat_ref_set() function in 2 distinct functions. Indeed, since
0844bed7d3 ("MEDIUM: map/acl: Improve pat_ref_set() efficiency (for
"set-map", "add-acl" action perfs)"), pat_ref_set() prototype was updated
to include an extra <elt> argument. But the logic behind is not explicit
because the function will not only try to set <elt>, but also its
duplicate (unlike pat_ref_set_elt() which only tries to update <elt>).
Thus, to make it clearer and better distinguish between the key-based
lookup version and the elt-based one, restotre pat_ref_set() previous
prototype and add a dedicated pat_ref_set_elt_duplicate() that takes
<elt> as argument and tries to update <elt> and all duplicates.
A UDP datagram cannot be greater than 65535 bytes, as UDP length header
field is encoded on 2 bytes. As such, sendmsg() will reject a bigger
input with error EMSGSIZE. By default, this does not cause any issue as
QUIC datagrams are limited to 1.252 bytes and sent individually.
However, with GSO support, value bigger than 1.252 bytes are specified
on sendmsg(). If using a bufsize equal to or greater than 65535, syscall
could reject the input buffer with EMSGSIZE. As this value is not
expected, the connection is immediately closed by haproxy and the
transfer is interrupted.
This bug can easily reproduced by requesting a large object on loopback
interface and using a bufsize of 65535 bytes. In fact, the limit is
slightly less than 65535, as extra room is also needed for IP + UDP
headers.
Fix this by reducing the count of datagrams encoded in a single GSO
invokation via qc_prep_pkts(). Previously, it was set to 64 as specified
by man 7 udp. However, with 1252 datagrams, this is still too many.
Reduce it to a value of 52. Input to sendmsg will thus be restricted to
at most 65.104 bytes if last datagram is full.
If there is still data available for encoding in qc_prep_pkts(), they
will be written in a separate batch of datagrams. qc_send_ppkts() will
then loop over the whole QUIC Tx buffer and call sendmsg() for each
series of at most 52 datagrams.
This does not need to be backported.
Let's move mworker_reexec() and mworker_reload() in mworker.c. mworker_reload()
is called only within the functions, which are already in mworker.c. So, this
reorganization allows to declare mworker_reload() as a static.
mworker_run_master() is called only in master mode. mworker_loop() is static
and called only in mworker_run_master(). So let's move these both functions in
mworker.c.
We also need here to make run_thread_poll_loop() accessible from other units,
as it's used in mworker_loop().
mworker_prepare_master() performs some preparation routines for the new worker
process, which will be forked during the startup. It's called only in
master-worker mode, so let's move it in mworker.c.
mworker_on_new_child_failure() performs some routines for the worker process,
if it has failed the reload. As it's called only in mworker_catch_sigchld()
from mworker.c, let's move mworker_on_new_child_failure() in mworker.c as well.
Like this it could also be declared as a static.
This patch prepares the moving of on_new_child_failure definition into
mworker.c. So, let's rename it accordingly and let's also update its
description.
QUIC pacing was recently implemented to limit burst and improve overall
bandwidth. This is used only for MUX STREAM emission. Pacing requires
nanosecond resolution. As such, it used now_cpu_time() which relies on
clock_gettime() syscall.
The usage of clock_gettime() has several drawbacks :
* it is a syscall and thus requires a context-switch which may hurt
performance
* it is not be available on all systems
* timestamp is retrieved multiple times during a single task execution,
thus yielding different values which may tamper pacing calculation
Improve this by using task_mono_time() instead. This returns task call
time from the scheduler thread context. It requires the flag
TASK_F_WANTS_TIME on QUIC MUX tasklet to force the scheduler to update
call time with now_mono_time(). This solves every limitations listed
above :
* syscall invokation is only performed once before tasklet execution,
thus reducing context-switch impact
* on non compatible system, a millisecond timer is used as a fallback
which should ensure that pacing works decently for them
* timer value is now guaranteed to be fixed duing task execution
In the memprofile summary per DSO, we currently have to pay a high price
by calling dladdr() on each symbol when doing the summary per DSO at the
end, while we're not interested in these details, we just want the DSO
name which can be made cheaper to obtain, and easier to manipulate. So
let's create resolve_dso_name() to only extract minimal information from
an address. At the moment it still uses dladdr() though it avoids all the
extra expensive work, and will further be able to leverage the same
mechanism as "show libs" to instantly spot DSO from address ranges.
Some dependencies might very well rely on posix_memalign(), strndup()
or other less portable callsn making us miss them when chasing memory
leaks, resulting in negative global allocation counters. Let's provide
the handlers for the following functions:
strndup() // _POSIX_C_SOURCE >= 200809L || glibc >= 2.10
valloc() // _BSD_SOURCE || _XOPEN_SOURCE>=500 || glibc >= 2.12
aligned_alloc() // _ISOC11_SOURCE
posix_memalign() // _POSIX_C_SOURCE >= 200112L
memalign() // obsolete
pvalloc() // obsolete
This time we don't fail if they're not found, we just silently forward
the calls.
Some memory profiling outputs have showed negative counters, very likely
due to some libs calling strdup(). Let's add it to the list of monitored
activities.
Actually even haproxy itself uses some. Having "profiling.memory on" in
the config reveals 35 call places.
In "show profiling memory", we need to distinguish methods which really
free memory from those which do not so that we don't account for the
free value twice. However for now it's done using multiple tests, which
are going to complicate the addition of new methods. Let's switch to a
bit field defined as a mask in a single place instead, as we don't
intend to use more than 32/64 methods!
There's actually a problem with memprofiles: the pool pointer is stored
in ->info but some pools are replaced during startup, such as the trash
pool, leaving a dangling pointer there.
Let's complete the API with a new function memprof_remove_stale_info()
that will remove all stale references to this info pointer. It's also
present when USE_MEMORY_PROFILING is not set so as to ease the job on
callers.
Let's store progname in the global variable, as it is handy to use it in
different parts of code to format messages sent to stdout.
This reduces the number of arguments, which we should pass to some functions.
This commit prepares the usage of the global progname variable.
prepare_caps_from_permitted_set() use progname value in warning messages. So,
let's rename program_name argument to progname.
The ->app_limited member of the delivery rate struct (quic_cc_drs) aim is to
store the index of the last transmitted byte marked as application-limited
so that to track the application-limited phases. During these phases,
BBR must ignore delivery rate samples to properly estimate the delivery rate.
Without such a patch, the Startup phase could be exited very quickly with
a very low estimated bottleneck bandwidth. This had a very bad impact
on little objects with download times smaller than the expected Startup phase
duration. For such objects, with enough bandwith, BBR should stay in the Startup
state.
No need to be backported, as BBR is implemented in the current developement version.
Extend extra pacing support for newreno and nocc congestion algorithms,
as with cubic.
For better extensibility of cc algo definition, define a new flags field
in quic_cc_algo structure. For now, the only value is
QUIC_CC_ALGO_FL_OPT_PACING which is set if pacing support can be
optionally activated. Both cubic, newreno and nocc now supports this.
This new flag is then reused by QUIC config parser. If set, extra
quic-cc-algo burst parameter is taken into account. If positive, this
will activate pacing support on top of the congestion algorithm. As with
cubic previously, pacing is only supported if running under experimental
mode.
Only BBR is not flagged with this new value as pacing is directly
builtin in the algorithm and cannot be turn off. Furthermore, BBR
calculates automatically its value for maximum burst. As such, any
quic-cc-algo burst argument used with BBR is still ignored with a
warning.
This only concerns functions emitting warnings about misplaced tcp-request
rules. The direction is now specified in the functions name. For instance
"warnif_misplaced_tcp_conn" is replaced by "warnif_misplaced_tcp_req_conn".
In warnings about misplaced rules, only the first keyword is mentionned. It
works well for http-request or quic-initial rules for instance. But it is a
bit confusing for tcp-request rules, because the layer is missing (session
or content).
To make it a bit systematic (and genric), the second argument can now be
provided. It can be set to NULL if there is no layer or scope. But
otherwise, it may be specified and it will be reported in the warning.
So the following snippet:
tcp-request content reject if FALSE
tcp-request session reject if FALSE
tcp-request connection reject if FALSE
Will now emit the following warnings:
a 'tcp-request session' rule placed after a 'tcp-request content' rule will still be processed before.
a 'tcp-request connection' rule placed after a 'tcp-request session' rule will still be processed before.
This patch should fix the issue #2596.
qc_packet_loss_lookup() aim is to detect the packet losses. This is this function
which must called ->on_pkt_lost() BBR specific callback. It also set
<bytes_lost> passed parameter to the total number of bytes detected as lost upon
an ACK frame receipt for its caller.
Modify qc_release_lost_pkts() to call ->congestion_event() with the send time
from the newest packet detected as lost.
Modify qc_release_lost_pkts() to call ->slow_start() callback only if define
by the congestion control algorithm. This is not the case for BBR.
Add several callbacks to quic_cc_algo struct which are only called by BBR.
->get_drs() may be used to retrieve the delivery rate sampling information
from an congestion algorithm struct (quic_cc).
->on_transmit() must be called before sending any packet a QUIC sender.
->on_ack_rcvd() must be called after having received an ACK.
->on_pkt_lost() must be called after having detected a packet loss.
->congestion_event() must be called after any congestion event detection
Modify quic_cc.c to call ->event only if defined. This is not the case
for BBR.
Implement the version 3 of BBR for QUIC specified by the IETF in this draft:
https://datatracker.ietf.org/doc/draft-ietf-ccwg-bbr/
Here is an extract from the Abstract part to sum up the the capabilities of BBR:
BBR ("Bottleneck Bandwidth and Round-trip propagation time") uses recent
measurements of a transport connection's delivery rate, round-trip time, and
packet loss rate to build an explicit model of the network path. BBR then uses
this model to control both how fast it sends data and the maximum volume of data
it allows in flight in the network at any time. Relative to loss-based congestion
control algorithms such as Reno [RFC5681] or CUBIC [RFC9438], BBR offers
substantially higher throughput for bottlenecks with shallow buffers or random
losses, and substantially lower queueing delays for bottlenecks with deep buffers
(avoiding "bufferbloat"). BBR can be implemented in any transport protocol that
supports packet-delivery acknowledgment. Thus far, open source implementations
are available for TCP [RFC9293] and QUIC [RFC9000].
In haproxy, this implementation is considered as still experimental. It depends
on the newly implemented pacing feature.
BBR was asked in GH #2516 by @KazuyaKanemura, @osevan and @kennyZ96.
Implement the Kathleen Nichols' algorithm used by several congestion control
algorithm implementation (TCP/BBR in Linux kernel, QUIC/BBR in quiche) to track
the maximum value of a data type during a fixe time interval.
In this implementation, counters which are periodically reset are used in place
of timestamps.
Only the max part has been implemented.
(see lib/minmax.c implemenation for Linux kernel).
Add ->initial_wnd new member to quic_cc_path struct to keep the initial value
of the congestion window. This member is initialized as soon as a QUIC connection
is allocated. This modification is required for BBR congestion control algorithm.
Once in a while we find some makefiles ignoring some outdated arguments
and just emit a warning. What's annoying is that if users (say, distro
packagers), have purposely added ERR=1 to their build scripts to make
sure to fail on any warning, these ones will be ignored and the build
can continue with invalid or missing options.
William rightfully suggested that ERR=1 should also catch make's warnings
so this patch implements this, by creating a new "complain" variable that
points either to "error" or "warning" depending on $(ERR), and that is
used to send the messages using $(call $(complain),...). This does the
job right at little effort (tested from GNU make 3.82 to 4.3).
Note that for this purpose the ERR declaration was upped in the makefile
so that it appears before the new errors.mk file is included.
tasklet_wakeup_on() and its derivates (tasklet_wakeup_after() and
tasklet_wakeup()) do not support passing a wakeup cause like
task_wakeup(). This is essentially due to an API limitation cause by
the fact that for a very long time the only reason for waking up was
to process pending I/O. But with the growing complexity of mux tasks,
it is becoming important to be able to skip certain heavy processing
when not strictly needed.
One possibility is to permit the caller of tasklet_wakeup() to pass
flags like task_wakeup(). Instead of going with a complex naming scheme,
let's simply make the flags optional and be zero when not specified. This
means that tasklet_wakeup_on() now takes either 2 or 3 args, and that the
third one is the optional flags to be passed to the callee. Eligible flags
are essentially the non-persistent ones (TASK_F_UEVT* and TASK_WOKEN_*)
which are cleared when the tasklet is executed. This way the handler
will find them in its <state> argument and will be able to distinguish
various causes for the call.
Everything in the tasklet layer supports flags, except that they are
just not implemented in the wakeup functions, while they are in the
task_wakeup functions. Initially it was not considered useful to pass
wakeup causes because these were essentially I/O, but with the growing
number of I/O handlers having to deal with various types of operations
(typically cheap I/O notifications on subscribe vs heavy parsing on
application-level wakeups), it would be nice to start to make this
distinction possible.
This commit extends _tasklet_wakeup_on() and _tasklet_wakeup_after()
to pass a set of flags that continues to be set as zero. For now this
changes nothing, but new functions will come.
Currently tasks being profiled have th_ctx->sched_call_date set to the
current nanosecond in monotonic time. But there's no other way to have
this, despite the scheduler being capable of it. Let's just declare a
new task flag, TASK_F_WANTS_TIME, that makes the scheduler take the time
just before calling the handler. This way, a task that needs nanosecond
resolution on the call date will be able to be called with an up-to-date
date without having to abuse now_mono_time() if not needed. In addition,
if CLOCK_MONOTONIC is not supported (now_mono_time() always returns 0),
the date is set to the most recently known now_ns, which is guaranteed
to be atomic and is only updated once per poll loop.
This date can be more conveniently retrieved using task_mono_time().
This can be useful, e.g. for pacing. The code was slightly adjusted so
as to merge the common parts between the profiling case and this one.
We used to store it in 32-bits since we'd only use it for latency and CPU
usage calculation but usages will evolve so let's not truncate the value
anymore. Now we store the full 64 bits. Note that this doesn't even
increase the storage size due to alignment. The 3 usage places were
verified to still be valid (most were already cast to 32 bits anyway).
To improve debugging, extend "show quic" output to report if pacing is
activated on a connection. Two values will be displayed for pacing :
* a new counter paced_sent_ctr is defined in QCC structure. It will be
incremented each time an emission is interrupted due to pacing.
* pacing engine now saves the number of datagrams sent in the last paced
emission. This will be helpful to ensure burst parameter is valid.
Define a new QUIC congestion algorithm token 'cubic-pacing' for
quic-cc-algo bind keyword. This is identical to default cubic
implementation, except that pacing is used for STREAM frames emission.
This algorithm supports an extra argument to specify a burst size. This
is stored into a new bind_conf member named quic_pacing_burst which can
be reuse to initialize quic path.
Pacing support is still considered experimental. As such, 'cubic-pacing'
can only be used with expose-experimental-directives set.
Support pacing emission for STREAM frames at the QUIC MUX layer. This is
implemented by adding a quic_pacer engine into QCC structure.
The main changes have been written into qcc_io_send(). It now
differentiates cases when some frames have been rejected by transport
layer. This can occur as previously due to congestion or FD buffer full,
which requires subscribing on transport layer. The new case is when
emission has been interrupted due to pacing timing. In this case, QUIC
MUX I/O tasklet is rescheduled to run with the flag TASK_F_USR1.
On tasklet execution, if TASK_F_USR1 is set, all standard processing for
emission and reception is skipped. Instead, a new function
qcc_purge_sending() is called. Its purpose is to retry emission with the
saved STREAM frames list. Either all remaining frames can now be send,
subscribe is done on transport error or tasklet must be rescheduled for
pacing purging.
In the meantime, if tasklet is rescheduled due to other conditions,
TASK_F_USR1 is reset. This will trigger a full regeneration of STREAM
frames. In this case, pacing expiration must be check before calling
qcc_send_frames() to ensure emission is now allowed.
QUIC MUX will be responsible to drive emission with pacing. This will be
implemented via setting TASK_F_USR1 before I/O tasklet wakeup. To
prepare this, encapsulate each I/O tasklet wakeup into a new function
qcc_wakeup().
This commit is purely refactoring prior to pacing implementation into
QUIC MUX.
For STREAM emission, MUX QUIC previously used a local list defined under
qcc_io_send(). This was suitable as either all frames were sent, or
emission must be interrupted due to transport congestion or fatal error.
In the latter case, the list was emptied anyway and a new frame list was
built on future qcc_io_send() invokation.
For pacing, MUX QUIC may have to save the frame list if pacing should be
applied across emission. This is necessary to avoid to unnecessarily
rebuilt stream frame list between each paced emission. To support this,
STREAM list is now stored as a member of QCC structure.
Ensure frame list is always deleted, even on QCC release, using newly
defined utility function qcc_tx_frms_free().
qc_send_mux() has been extended previously to support pacing emission.
This will ensure that no more than one datagram will be emitted during
each invokation. However, to achieve better performance, it may be
necessary to emit a batch of several datagrams one one turn.
A so-called burst value can be specified by the user in the
configuration. However, some congestion control algos may defined their
owned dynamic value. As such, a new CC callback pacing_burst is defined.
quic_cc_default_pacing_burst() can be used for algo without pacing
interaction, such as cubic. It will returns a static value based on user
selected configuration.
Pacing will be implemented for STREAM frames emission. As such,
qc_send_mux() API has been extended to add an argument to a quic_pacer
engine.
If non NULL, engine will be used to pace emission. In short, no more
than one datagram will be emitted for each qc_send_mux() invokation.
Pacer is then notified about the emission and a timer for a future
emission is calculated. qc_send_mux() will return PACING error value, to
inform QUIC MUX layer that it will be responsible to retry emission
after some delay.
Extend quic_pacer engine to support pacing emission. Several functions
are defined.
* quic_pacing_sent_done() to notify engine about an emission of one or
several datagrams
* quic_pacing_expired() to check if emission should be delayed or can be
conducted immediately
This commit is part of a adjustment on QUIC transport send API to
support pacing. Here, qc_send_mux() return type has been changed to use
a new enum quic_tx_err.
This is useful to explain different failure causes of emission. For now,
only two values have been defined : NONE and FATAL. When pacing will be
implemented, a new value would be added to specify that emission was
interrupted on pacing. This won't be a fatal error as this allows to
retry emission but not immediately.
Extend QUIC transport emission function to support a maximum datagram
argument. The purpose is to ensure that qc_send() won't emit more than
the specified value, unless it is 0 which is considered as unlimited.
In qc_prep_pkts(), a counter of built datagram has been added to support
this. The packet building loop is interrupted if it reaches a specified
maximum value. Also, its return value has been changed to the number of
prepared datagrams. This is reused by qc_send() to interrupt its work if
a specified max datagram argument value is reached over one or several
iteration of prepared/sent datagrams.
This change is necessary to support pacing emission. Note that ideally,
the total length in bytes of emitted datagrams should be taken into
account instead of the raw number of datagrams. However, for a first
implementation, it was deemed easier to implement it with the latter.