Half of the users of this include only need the type definitions and
not the manipulation macros nor the inline functions. Moves the various
types into mini-clist-t.h makes the files cleaner. The other one had all
its includes grouped at the top. A few files continued to reference it
without using it and were cleaned.
In addition it was about time that we'd rename that file, it's not
"mini" anymore and contains a bit more than just circular lists.
Fortunately that file wasn't made dependent upon haproxy since it was
integrated, better isolate it before it's too late. Its dependency on
api.h was the result of the change from config.h, which in turn wasn't
correct. It was changed back to stddef.h for size_t and sys/types.h for
ssize_t. The recently added reference to MAX() was changed as it was
placed only to avoid a zero length in the non-free-standing version and
was causing a build warning in the hpack encoder.
All files that were including one of the following include files have
been updated to only include haproxy/api.h or haproxy/api-t.h once instead:
- common/config.h
- common/compat.h
- common/compiler.h
- common/defaults.h
- common/initcall.h
- common/tools.h
The choice is simple: if the file only requires type definitions, it includes
api-t.h, otherwise it includes the full api.h.
In addition, in these files, explicit includes for inttypes.h and limits.h
were dropped since these are now covered by api.h and api-t.h.
No other change was performed, given that this patch is large and
affects 201 files. At least one (tools.h) was already freestanding and
didn't get the new one added.
This patch extends the sink_write prototype and code to
handle the rfc5424 and rfc3164 header.
It uses header building tools from log.c. Doing this some
functions/vars have been externalized.
facility and minlevel have been removed from the struct sink
and passed to args at sink_write because they depends of the log
and not of the sink (they remained unused by rest of the code
until now).
Since commit 88ebd40 ("MINOR: trace: add allocation of buffer-sized
trace buffers") we have a trace buffer allocated at boot time. But
there was a copy-paste error there making the test verify that the
trash was allocated instead of the trace buffer. The result is that
depending on the link order either the test will succeed or fail,
preventing haproxy from starting at all.
No backport is needed.
The detail level initially based on syslog levels is not used, while
something related is missing, trace verbosity, to indicate whether or
not we want to call the decoding callback and what level of decoding
we want (raw captures etc). Let's change the field to "verbosity" for
this. A verbosity of zero means that the decoding callback is not
called, and all other levels are handled by this callback and are
source-specific. The source is now prompted to list the levels that
are proposed to the user. When the source doesn't define anything,
"quiet" and "default" are available.
It's very convenient to know the trace level in the output, at least to
grep/grep -v on it. The main usage is to filter/filter out the developer
traces at level DEVEL. For this we now add the numeric level (0 to 4) just
after the source name in the brackets. The output now looks like this :
[00|h2|4|mux_h2.c:3174] h2_send(): entering : h2c=0x27d75a0 st=2
-, -, | ------------, --------, -------------------> message
| | | | '-> function name
| | | '-> source file location
| | '-> trace level (4=dev)
| '-> trace source
'-> thread number
Working on adding traces to mux-h2 revealed that the function names are
manually copied a lot in developer traces. The reason is that they are
not preprocessor macros and as such cannot be concatenated. Let's
slightly adjust the trace() function call to take a function name just
after the file:line argument. This argument is only added for the
TRACE_DEVEL and 3 new TRACE_ENTER, TRACE_LEAVE, and TRACE_POINT macros
and left NULL for others. This way the function name is only reported
for traces aimed at the developers. The pretty-print callback was also
extended to benefit from this. This will also significantly shrink the
data segment as the "entering" and "leaving" strings will now be merged.
One technical point worth mentioning is that the function name is *not*
passed as an ist to the inline function because it's not considered as
a builtin constant by the compiler, and would lead to strlen() being
run on it from all call places before calling the inline function. Thus
instead we pass the const char * (that the compiler knows where to find)
and it's the __trace() function that converts it to an ist for internal
consumption and for the pretty-print callback. Doing this avoids losing
5-10% peak performance.
The "payload" trace level was ambigous because its initial purpose was
to be able to dump received data. But it doesn't make sense to force to
report data transfers just to be able to report state changes. For
example, all snd_buf()/rcv_buf() operations coming from the application
layer should be tagged at this level. So here we move this payload level
above the state transitions and rename it to avoid the ambiguity making
one think it's only about request/response payload. Now it clearly is
about any data transfer and is thus just below the developer level. The
help messages on the CLI and the doc were slightly reworded to help
remove this ambiguity.
Traces were missing the thread number and the source name, which was
really annoying. Now the thread number is emitted on two digits inside
the square brackets, followed by the source name then the line location,
each delimited with a vertical bar, such as below :
[00|h2|mux_h2.c:2651] Notifying stream about SID change : h2c=0x7f3284581ae0 st=3 h2s=0x7f3284297f00 id=523 st=4
[00|h2|mux_h2.c:2708] receiving H2 HEADERS frame : h2c=0x7f3284581ae0 st=3 dsi=525 (st=0)
[02|h2|mux_h2.c:2194] Received H2 request : h2c=0x7f328d3d1ae0 st=2 : [525] H2 REQ: GET / HTTP/2.0
[02|h2|mux_h2.c:2561] Expecting H2 frame header : h2c=0x7f328d3d1ae0 st=2
It becomes apparent that most traces will use a single trace pretty
print callback, so let's allow the trace source to declare a default
one so that it can be omitted from trace calls, and will be used if
no other one is specified.
Now we try to find frontend, listener, backend, server, connection,
session, stream, from the presented argument of type connection,
stream or session. Various combinations and bounces allow to
retrieve most of them almost all the time. The extraction is
performed early so that we'll be able to apply filters later.
The lock-on is set if it was not there while the trace is running and
a valid pointer is available. If it was already set and doesn't match,
no trace is produced.
When no criterion is provided, it carefully enumerates all available
ones, including those provided by the source itself. Otherwise it sets
the new criterion and resets the lockon pointer.
When we stop or pause a trace (either on a matching event or by hand),
we must also stop the lock-on feature so that we don't follow any
further activity on this pointer even if it is recycled. For now this
is not exploited.
The trace() call will support an optional decoding callback and 4
arguments that this function is supposed to know how to use to provide
extra information. The output remains unchanged when the function is
NULL. Otherwise, the message is pre-filled into the thread-local
trace_buf, and the function is called with all arguments so that it
completes the buffer in a readable form depending on the expected
level of detail.
This new "level" argument will allow the trace sources to label the
traces for different purposes, and filter out some of them if they
are not relevant to the current target. Right now we have 5 different
levels:
- USER : the least verbose one, only a few functional information
- PAYLOAD: like user but also displays some payload-related information
- PROTO: focuses on the protocol's framing
- STATE: also indicate state internal transitions or non-transitions
- DEVELOPER: adds extra info about branches taken in the code (break
points, return points)
We now pass an extra argument "where" to the trace() call, which
is supposed to be an ist made of the concatenation of the filename
and the line number. We only keep the last 10 chars from this string
since the end of file names is most often easy to recognize. This
gives developers useful information at very low cost.
For now it remains quite basic. It performs a few state checks, calls
the source's sink if defined, and performs the transitions between
RUNNING, STOPPED and WAITING when the configured events match.
The new "show trace" CLI command lists available trace sources and
indicates their status, their sink, and number of dropped packets.
When "show trace <source>" is used, the list of known events is
also listed with their status per action (report/start/stop/pause).
The "level" keyword allows to indicate the expected level of verbosity
in the traces, among "user" (least verbose, just synthetic info) to
"developer" (very detailed, including function entry/leaving). It's only
displayed and set but not used yet.
For now it lists the sources if one is not provided, and checks
for the source's existence. It lists the events if not provided,
checks for their existence if provided, and adjusts reported
events/start/stop/pause events, and performs state transitions.
It lists sinks and adjusts them as well. Filters, lock, and
level are not implemented yet.
The principle of this subsystem will be to support taking live traces
at various places in the code with conditional triggers, filters, and
ability to lock on some elements. The traces will support typed events
and will be sent into sinks made of ring buffers, file descriptors or
remote servers.
The function call tracing code is a quite old and was never ported to
support threads. It's not even sure whether it still works well, but
at least its presence creates confusion for future work so let's rename
it to calltrace.c and add a comment about its lack of thread-safety.
On x86_64, when gcc instruments functions and compiles at -O0, it saves
the function's return value in register rbx before calling the trace
callback. It provides a nice opportunity to display certain useful
values (flags, booleans etc) during trace sessions. It's absolutely
not guaranteed that it will always work but it provides a considerable
help when it does so it's worth activating it. When building on a
different architecture, the value 0 is always reported as the return
value. On x86_64 with optimizations (-O), the RBX register will not
necessarily match and random values will be reported, but since it's
not the primary target it's not a problem.
Now any call to trace() in the code will automatically appear interleaved
with the call sequence and timestamped in the trace file. They appear with
a '#' on the 3rd argument (caller's pointer) in order to make them easy to
spot. If the trace functionality is not used, a dmumy weak function is used
instead so that it doesn't require to recompile every time traces are
enabled/disabled.
The trace decoder knows how to deal with these messages, detects them and
indents them similarly to the currently traced function. This can be used
to print function arguments for example.
Note that we systematically flush the log when calling trace() to ensure we
never miss important events, so this may impact performance.
The trace() function uses the same format as printf() so it should be easy
to setup during debugging sessions.
This feature relies on GCC's ability to call helpers at function entry/exit
points. We define these helpers to quickly dump the minimum info into a trace
file that can be converted to a human readable format using a script in the
contrib/trace directory. This has only been implemented in the GNU makefile
for now on as it is unsure whether it's supported on all OSes.
The feature is enabled by building with "TRACE=1". The performance impact is
huge, so this feature should only be used when debugging. To limit the loss
of performance, fprintf() has been disabled and the output is hand-crafted
and emitted using fwrite(), resulting in doubling the performance. Using the
TSC instead of gettimeofday() also doubles the performance. Around 1200 conns/s
may be achieved on a Pentium-M 1.7 GHz which leads to around 50 MB/s of traces.
The entry and exits of all functions will be dumped into a file designated
by the HAPROXY_TRACE environment variable, or by default "trace.out". If the
trace file name is empty or "/dev/null", then traces are disabled. If
opening the trace file fails, then stderr is used. If HAPROXY_TRACE_FAST is
used, then the time is taken from the global <now> variable. Last, if
HAPROXY_TRACE_TSC is used, then the machine's TSC is used instead of the
real time (almost twice as fast).
The output format is :
<sec.usec> <level> <caller_ptr> <dir> <callee_ptr>
or :
<tsc> <level> <caller_ptr> <dir> <callee_ptr>
where <dir> is '>' when entering a function and '<' when leaving.
The awk script in contrib/trace provides a nicer indented output :
6f74989e6f8 ->->-> run_poll_loop > signal_process_queue [src/haproxy.c:1097:0x804bd69] > [include/proto/signal.h:32:0x8049cd0]
6f74989eb00 run_poll_loop < signal_process_queue [src/haproxy.c:1097:0x804bd69] < [include/proto/signal.h:32:0x8049cd0]
6f74989ef44 ->->-> run_poll_loop > wake_expired_tasks [src/haproxy.c:1100:0x804bd72] > [src/task.c:123:0x8055060]
6f74989f3a6 ->->->-> wake_expired_tasks > eb32_lookup_ge [src/task.c:128:0x8055091] > [ebtree/eb32tree.c:138:0x80a8c70]
6f74989f7e9 wake_expired_tasks < eb32_lookup_ge [src/task.c:128:0x8055091] < [ebtree/eb32tree.c:138:0x80a8c70]
6f74989fc0d ->->->-> wake_expired_tasks > eb32_first [src/task.c:134:0x80550d5] > [ebtree/eb32tree.h:55:0x8054ad0]
6f7498a003d ->->->->-> eb32_first > eb_first [ebtree/eb32tree.h:56:0x8054af1] > [ebtree/ebtree.h:520:0x8054a10]
6f7498a0436 ->->->->->-> eb_first > eb_walk_down [ebtree/ebtree.h:521:0x8054a33] > [ebtree/ebtree.h:442:0x80549a0]
6f7498a0843 ->->->->->->-> eb_walk_down > eb_gettag [ebtree/ebtree.h:445:0x80549d6] > [ebtree/ebtree.h:418:0x80548e0]
6f7498a0c2b eb_walk_down < eb_gettag [ebtree/ebtree.h:445:0x80549d6] < [ebtree/ebtree.h:418:0x80548e0]
6f7498a1042 ->->->->->->-> eb_walk_down > eb_untag [ebtree/ebtree.h:447:0x80549e2] > [ebtree/ebtree.h:412:0x80548a0]
6f7498a1498 eb_walk_down < eb_untag [ebtree/ebtree.h:447:0x80549e2] < [ebtree/ebtree.h:412:0x80548a0]
6f7498a18c6 ->->->->->->-> eb_walk_down > eb_root_to_node [ebtree/ebtree.h:448:0x80549e7] > [ebtree/ebtree.h:432:0x8054960]
6f7498a1cd4 eb_walk_down < eb_root_to_node [ebtree/ebtree.h:448:0x80549e7] < [ebtree/ebtree.h:432:0x8054960]
6f7498a20c4 eb_first < eb_walk_down [ebtree/ebtree.h:521:0x8054a33] < [ebtree/ebtree.h:442:0x80549a0]
6f7498a24b4 eb32_first < eb_first [ebtree/eb32tree.h:56:0x8054af1] < [ebtree/ebtree.h:520:0x8054a10]
6f7498a289c wake_expired_tasks < eb32_first [src/task.c:134:0x80550d5] < [ebtree/eb32tree.h:55:0x8054ad0]
6f7498a2c8c run_poll_loop < wake_expired_tasks [src/haproxy.c:1100:0x804bd72] < [src/task.c:123:0x8055060]
6f7498a3095 ->->-> run_poll_loop > process_runnable_tasks [src/haproxy.c:1103:0x804bd7a] > [src/task.c:190:0x8055150]
A nice improvement would possibly consist in trying to get the function's
arguments in the stack and to dump a few more infor for some well-known
functions (eg: the session's status for process_session).