Now we atomically allocate the my_regex struct within function
regex_comp() and compile the regex or free both in case of failure. The
pointer to the allocated my_regex struct is returned directly. The
my_regex* argument to regex_comp() is removed.
Function regex_free() was modified so that it systematically frees the
my_regex entry. The function does nothing when called with a NULL as
argument (like free()). It will avoid existing risk of not properly
freeing the initialized area.
Other structures are also updated in order to be compatible (the ones
related to Lua and action rules).
With this patch we add a prefix to stick-table names declared in "peers" sections
concatenating the "peers" section name followed by a '/' character with
the stick-table name. Consequently, "peers" sections have their own
namespace for their stick-tables. Obviously, these stick-table names are not the
ones which should be sent over the network. So these configurations must be
compatible and should make A and B peers communicate with peers protocol:
# haproxy A config, old way stick-table declerations
peers mypeers
peer A ...
peer B ...
backend t1
stick-table type string size 10m store gpc0 peers mypeers
# haproxy B config, new way stick-table declerations
peers mypeers
peer A ...
peer B ...
table t1 type string size store gpc0 10m
This "network" name is stored in ->nid new field of stktable struct. The "local"
stktable-name is still stored in ->id.
Add a list of proxies for all the stick-tables (->proxies_list struct stktable
member) so that to be able to compute the process bindings of the peers after having
parsed the configuration file.
The proxies are added to the stick-tables they reference when parsing
stick-tables lines in proxy sections, when checking the actions in
check_trk_action() and when resolving samples args for stick-tables
without checking is they are duplicates. We check only there is no loop.
Then, after having parsed everything, we add the proxy bindings to the
peers frontend bindings with stick-tables they reference.
This patch adds the support for the "table" line parsing in "peers" sections
to declare stick-table in such sections. This also prevents the user from having
to declare dummy backends sections with a unique stick-table inside.
Even if still supported, this usage will become deprecated.
To do so, the ->table member of proxy struct which is a stktable struct is replaced
by a pointer to a stktable struct allocated at parsing time in src/cfgparse-listen.c
for the dummy stick-table backends and in src/cfgparse.c for "peers" sections.
This has an impact on the code for stick-table sample converters and on the stickiness
rules parsers which first store the name of the dummy before resolving the rules.
This patch replaces proxy_tbl_by_name() calls by stktable_find_by_name() calls
to lookup for stick-tables stored in "stktable_by_name" ebtree at parsing time.
There is only one remaining place where proxy_tbl_by_name() is used: src/hlua.c.
At several places in the code we relied on the fact that ->size member of stick-table
was equal to zero to consider the stick-table was present by not configured,
this do not make sense anymore as ->table member of struct proxyis fow now on a pointer.
These tests are replaced by a test on ->table value itself.
In "peers" section we do not have to temporary store the name of the section the
stick-table are attached to because this name is obviously already known just after
having entered this "peers" section.
About the CLI stick-table I/O handler, the pointer to proxy struct is replaced by
a pointer to a stktable struct.
With this patch we move the code responsible of parsing "stick-table"
lines to implement parse_stick_table() function in src/stick-tabble.c
so that to be able to parse "stick-table" elsewhere than in proxy sections.
We have have also added a conf struct to stktable struct to store the filename
and the line in the file the stick-table has been parsed to help in
diagnosing and displaying any configuration issue.
I was about to partly revert 294d0f08b3d100fcae0e71c26d4f9f93d26e3569,
because there were no 'X' for 'appsession' in the keyword matrix until
I checked the blame, realizing that the feature does not exist any more.
Clearly the documentation is confusing here, the removal note is only
listed *below* the old documentation and the supported sections still
show 'backend' and 'listen'.
It's been 3.5 years and 4 releases (1.6, 1.7, 1.8 and 1.9), I guess
this can be removed from the documentation of future versions.
When running in HTX mode, if we sent the request, but failed to get the
answer, either because the server just closed its socket, we hit a server
timeout, or we get a 404, 408, 425, 500, 501, 502, 503 or 504 error,
attempt to retry the request, exactly as if we just failed to connect to
the server.
To do so, add a new backend keyword, "retry-on".
It accepts a list of keywords, which can be "none" (never retry),
"conn-failure" (we failed to connect, or to do the SSL handshake),
"empty-response" (the server closed the connection without answering),
"response-timeout" (we timed out while waiting for the server response),
or "404", "408", "425", "500", "501", "502", "503" and "504".
The default is "conn-failure".
For some embedded systems, it's pointless to have 32- or even 64- large
arrays of processes when it's known that much fewer processes will be
used in the worst case. Let's introduce this MAX_PROCS define which
contains the highest number of processes allowed to run at once. It
still defaults to LONGBITS but may be lowered.
Make "bind" keywork be supported in "peers" sections.
All "bind" settings are supported on this line.
Add "default-bind" option to parse the binding options excepted the bind address.
Do not parse anymore the bind address for local peers on "server" lines.
Do not use anymore list_for_each_entry() to set the "peers" section
listener parameters because there is only one listener by "peers" section.
May be backported to 1.5 and newer.
This one is a proxy option which can be inherited from defaults even
if the LB algo changes. Move it out of the lb_chash struct so that we
don't need to keep anything separate between these structs. This will
allow us to merge them into an union later. It even takes less room
now as it fills a hole and removes another one.
The algo-specific settings move from the proxy to the LB algo this way :
- uri_whole => arg_opt1
- uri_len_limit => arg_opt2
- uri_dirs_depth1 => arg_opt3
Some algorithms require a few extra options (up to 3). Let's provide
some room in lbprm to store them, and make sure they're passed from
defaults to backends.
These ones used to rely on separate variables called hh_name/hh_len
but they are exclusive with the former. Let's use the same variable
which becomes a generic argument name and length for the LB algorithm.
The "balance uri" options "whole", "len" and "depth" were not properly
inherited from the defaults sections. In addition, "whole" and "len"
were not even reset when parsing "uri", meaning that 2 subsequent
"balance uri" statements would not have the expected effect as the
options from the first one would remain for the second one.
This may be backported to all maintained versions.
In session, don't keep an infinite number of connection that can idle.
Add a new frontend parameter, "max-session-srv-conns" to set a max number,
with a default value of 5.
This was the largest function of the whole file, taking a rough second
to build alone. Let's move it to a distinct file along with a few
dependencies. Doing so saved about 2 seconds on the total build time.