Now, we process at most 200 active applets per call to applet_run_active. We use
the same limit as the tasks. With the cache filter and the SPOE, the number of
active applets can now be huge. So, it is important to limit the number of
applets processed in applet_run_active.
applets_active_queue is the active queue size. It is a global variable. So it is
underoptimized because we may be lead to consider there are active applets for a
thread while in fact all active applets are assigned to the otherthreads. So, in
such cases, the polling loop will be evaluated many more times than necessary.
Instead, we now check if the thread id is set in the bitfield active_applets_mask.
This is specific to threads, no backport is needed.
a bitfield has been added to know if there are runnable applets for a
thread. When an applet is woken up, the bits corresponding to its thread_mask
are set. When all active applets for a thread is get to be processed, the thread
is removed from active ones by unsetting its tid_bit from the bitfield.
This macro should be used to declare variables or struct members depending on
the USE_THREAD compile option. It avoids the encapsulation of such declarations
between #ifdef/#endif. It is used to declare all lock variables.
It was a leftover from the last cleaning session; this mask applies
to threads and calling it process_mask is a bit confusing. It's the
same in fd, task and applets.
A global lock has been added to protect accesses to the list of active
applets. A process mask has also been added on each applet. Like for FDs and
tasks, it is used to know which threads are allowed to process an
applet. Because applets are, most of time, linked to a session, it should be
sticky on the same thread. But in all cases, it is the responsibility of the
applet handler to lock what have to be protected in the applet context.
In order to authorize call of appctx_wakeup on running task:
- from within the task handler itself.
- in futur, from another thread.
The appctx is considered paused as default after running the handler.
The handler should explicitly call appctx_wakeup to be re-called.
When the appctx_free is called on a running handler. The real
free is postponed at the end of the handler process.
When an entity tries to get a buffer, if it cannot be allocted, for example
because the number of buffers which may be allocated per process is limited,
this entity is added in a list (called <buffer_wq>) and wait for an available
buffer.
Historically, the <buffer_wq> list was logically attached to streams because it
were the only entities likely to be added in it. Now, applets can also be
waiting for a free buffer. And with filters, we could imagine to have more other
entities waiting for a buffer. So it make sense to have a generic list.
Anyway, with the current design there is a bug. When an applet failed to get a
buffer, it will wait. But we add the stream attached to the applet in
<buffer_wq>, instead of the applet itself. So when a buffer is available, we
wake up the stream and not the waiting applet. So, it is possible to have
waiting applets and never awakened.
So, now, <buffer_wq> is independant from streams. And we really add the waiting
entity in <buffer_wq>. To be generic, the entity is responsible to define the
callback used to awaken it.
In addition, applets will still request an input buffer when they become
active. But they will not be sleeped anymore if no buffer are available. So this
is the responsibility to the applet I/O handler to check if this buffer is
allocated or not. This way, an applet can decide if this buffer is required or
not and can do additional processing if not.
[wt: backport to 1.7 and 1.6]
As for tasks, 2 counters has been added to track :
* the total number of applets : nb_applets
* the number of active applets : applets_active_queue
[wt: needed for next fixes, to backport to 1.7 and 1.6]
This function is a callback made only for calls from the applet handler.
Rename it to remove confusion. It's currently called from the Lua code
but that's not correct, we should call the notify and update functions
instead otherwise it will not enable the applet again.
If an applet wakes up and causes the next one to sleep, the active list
is corrupted and cannot be scanned anymore, as the process then loops
over the next element.
In order to avoid this problem, we move the active applet list to a run
queue and reinit the active list. Only the first element of this queue
is checked, and if the element is not removed, it is removed and requeued
into the active list.
Since we're using a distinct list, if an applet wants to requeue another
applet into the active list, it properly gets added to the active list
and not to the run queue.
This stops the infinite loop issue that could be caused with Lua applets,
and in any future configuration where two applets could be attached
together.
This is not a real run queue and we're facing ugly bugs because
if this : if a an applet removes another applet from the queue,
typically the next one after itself, the list iterator loops
forever because the list's backup pointer is not valid anymore.
Before creating a run queue, let's rename this list.
The applets don't fiddle with SI_FL_WAIT_ROOM anymore, instead they indicate
what they want, possibly that they failed (eg: WAIT_ROOM), and it's done() /
update() which finally updates the WAIT_* flags according to the channels'
and stream interface's states. This solves the issue of the pauses during a
"show sess" without creating busy loops.
It's much easier to centralize this call into the I/O handler than to
do it everywhere with the risk to miss it. Applets are not allowed to
unregister themselves anyway so their SI is still present and it is
possible to update all the context.
The new function is called for each round of polling in order to call any
active appctx. For now we pick the stream interface from the appctx's
owner. At the moment there's no appctx queued yet, but we have everything
needed to queue them and remove them.