When data were sent using the kernel splicing, we tried to send all data
with no restriction. Most of time it is valid. However, because the payload
representation may differ between the producer and the consumer, it is
important to be able to specify how must data to send via the splicing.
Of course, for performance reason, it is important to maximize amount of
data send via splicing at each call. However, on edge-cases, this now can be
limited.
During multiple tests we've already noticed that shared stats counters
have become a real bottleneck under large thread counts. With QUIC it's
pretty visible, with qc_snd_buf() taking 2.5% of the CPU on a 48-thread
machine at only 25 Gbps, and this CPU is entirely spent in the atomic
increment of the byte count and byte rate. It's also visible in H1/H2
but slightly less since we're working with larger buffers, hence less
frequent updates. These counters are exclusively used to report the
byte count in "show info" and the byte rate in the stats.
Let's move them to the thread_ctx struct and make the stats reader
just collect each thread's stats when requested. That's way more
efficient than competing on a single cache line.
After this, qc_snd_buf has totally disappeared from the perf profile
and tests made in h1 show roughly 1% performance increase on small
objects.
In raw_sock_to_buf(), if a low-level error is reported, we no longer
immediately set an error on the connexion if something was received. This
may happen when a RST is received with data. This way, we let a chance to
the mux to process received data first instead of immediately aborting.
This patch should fix some spurious health-check failures. It is pretty hard
to observe, but with a server immediately returning the response followed by
a RST, without waiting the request, it is possible to have some health-check
errors. For instance, with the following tcploop server:
tcploop 8000 L Q W N1 A S:"HTTP/1.0 200 OK\r\n\r\n" F K
( Accept -> send response -> FIN -> Close)
we can have such strace output:
15:11:21.433005 socket(AF_INET, SOCK_STREAM, IPPROTO_IP) = 38
15:11:21.433141 fcntl(38, F_SETFL, O_RDONLY|O_NONBLOCK) = 0
15:11:21.433233 setsockopt(38, SOL_TCP, TCP_NODELAY, [1], 4) = 0
15:11:21.433359 setsockopt(38, SOL_TCP, TCP_QUICKACK, [0], 4) = 0
15:11:21.433457 connect(38, {sa_family=AF_INET, sin_port=htons(8000), sin_addr=inet_addr("127.0.0.1")}, 16) = -1 EINPROGRESS (Operation now in progress)
15:11:21.434215 epoll_ctl(4, EPOLL_CTL_ADD, 38, {events=EPOLLIN|EPOLLOUT|EPOLLRDHUP, data={u32=38, u64=38}}) = 0
15:11:21.434468 epoll_wait(4, [{events=EPOLLOUT, data={u32=38, u64=38}}], 200, 21) = 1
15:11:21.434810 recvfrom(38, 0x7f32a83e5020, 16320, 0, NULL, NULL) = -1 EAGAIN (Resource temporarily unavailable)
15:11:21.435405 sendto(38, "OPTIONS / HTTP/1.0\r\ncontent-leng"..., 41, MSG_DONTWAIT|MSG_NOSIGNAL, NULL, 0) = 41
15:11:21.435833 epoll_ctl(4, EPOLL_CTL_MOD, 38, {events=EPOLLIN|EPOLLRDHUP, data={u32=38, u64=38}}) = 0
15:11:21.435907 epoll_wait(4, [{events=EPOLLIN|EPOLLERR|EPOLLHUP|EPOLLRDHUP, data={u32=38, u64=38}}], 200, 17) = 1
15:11:21.436024 recvfrom(38, "HTTP/1.0 200 OK\r\n\r\n", 16320, 0, NULL, NULL) = 19
15:11:21.436189 close(38) = 0
15:11:21.436402 write(2, "[WARNING] (163564) : Server bac"..., 184[WARNING] (163564) : Server back-http/www is DOWN, reason: Socket error, check duration: 5ms. 0 active and 0 backup servers left. 0 sessions active, 0 requeued, 0 remaining in queue.
The response was received, but it is ignored because an error was reported
too. The error handling must be refactored. But it a titanic stain. Thus,
for now, a good fix is to delay the error report when something was
received. The error will be reported on the next receive, if any.
This patch should fix the issue #1863, but it must be confirmed. At least it
fixes the above example. It must be backported to 2.6. For older versions,
it must be evaluated first.
There's no point trying to send() on a socket on which an error was already
reported. This wastes syscalls. Till now it was possible to occasionally
see an attempt to sendto() after epoll_wait() had reported EPOLLERR.
Some older systems may routinely return EWOULDBLOCK for some syscalls
while we tend to check only for EAGAIN nowadays. Modern systems define
EWOULDBLOCK as EAGAIN so that solves it, but on a few older ones (AIX,
VMS etc) both are different, and for portability we'd need to test for
both or we never know if we risk to confuse some status codes with
plain errors.
There were few entries, the most annoying ones are the switch/case
because they require to only add the entry when it differs, but the
other ones are really trivial.
Transport layers (raw_sock, ssl_sock, xprt_handshake and xprt_quic)
were using 4 constructors and 2 destructors. The 4 constructors were
replaced with INITCALL and the destructors with REGISTER_POST_DEINIT()
so that we do not depend on this anymore.
Certain functions cannot be called on an FD-less conn because they are
normally called as part of the protocol-specific setup/teardown sequence.
Better place a few BUG_ON() to make sure none of them is called in other
situations. If any of them would trigger in ambiguous conditions, it would
always be possible to replace it with an error.
No need to keep this flag apart any more, let's merge it into the global
state. The CLI's output state was extended to 6 digits and the linger/cloned
flags moved inside the parenthesis.
For a long time we've had fdtab[].ev and fdtab[].state which contain two
arbitrary sets of information, one is mostly the configuration plus some
shutdown reports and the other one is the latest polling status report
which also contains some sticky error and shutdown reports.
These ones used to be stored into distinct chars, complicating certain
operations and not even allowing to clearly see concurrent accesses (e.g.
fd_delete_orphan() would set the state to zero while fd_insert() would
only set the event to zero).
This patch creates a single uint with the two sets in it, still delimited
at the byte level for better readability. The original FD_EV_* values
remained at the lowest bit levels as they are also known by their bit
value. The next step will consist in merging the remaining bits into it.
The whole bits are now cleared both in fd_insert() and _fd_delete_orphan()
because after a complete check, it is certain that in both cases these
functions are the only ones touching these areas. Indeed, for
_fd_delete_orphan(), the thread_mask has already been zeroed before a
poller can call fd_update_event() which would touch the state, so it
is certain that _fd_delete_orphan() is alone. Regarding fd_insert(),
only one thread will get an FD at any moment, and it as this FD has
already been released by _fd_delete_orphan() by definition it is certain
that previous users have definitely stopped touching it.
Strictly speaking there's no need for clearing the state again in
fd_insert() but it's cheap and will remove some doubts during some
troubleshooting sessions.
In the continuity of the commit 7cf0e4517 ("MINOR: raw_sock: report global
traffic statistics"), we are now able to report the global number of bytes
emitted using the splicing. It can be retrieved in "show info" output on the
CLI.
Note this counter is always declared, regardless the splicing support. This
eases the integration with monitoring tools plugged on the CLI.
This patch fixes all the leftovers from the include cleanup campaign. There
were not that many (~400 entries in ~150 files) but it was definitely worth
doing it as it revealed a few duplicates.
Most of the files dealing with error reports have to include log.h in order
to access ha_alert(), ha_warning() etc. But while these functions don't
depend on anything, log.h depends on a lot of stuff because it deals with
log-formats and samples. As a result it's impossible not to embark long
dependencies when using ha_warning() or qfprintf().
This patch moves these low-level functions to errors.h, which already
defines the error codes used at the same places. About half of the users
of log.h could be adjusted, sometimes revealing other issues such as
missing tools.h. Interestingly the total preprocessed size shrunk by
4%.
The current state of the logging is a real mess. The main problem is
that almost all files include log.h just in order to have access to
the alert/warning functions like ha_alert() etc, and don't care about
logs. But log.h also deals with real logging as well as log-format and
depends on stream.h and various other things. As such it forces a few
heavy files like stream.h to be loaded early and to hide missing
dependencies depending where it's loaded. Among the missing ones is
syslog.h which was often automatically included resulting in no less
than 3 users missing it.
Among 76 users, only 5 could be removed, and probably 70 don't need the
full set of dependencies.
A good approach would consist in splitting that file in 3 parts:
- one for error output ("errors" ?).
- one for log_format processing
- and one for actual logging.
The type file is becoming a mess, half of it is for the proxy protocol,
another good part describes conn_streams and mux ops, it would deserve
being split again. At least it was reordered so that elements are easier
to find, with the PP-stuff left at the end. The MAX_SEND_FD macro was moved
to compat.h as it's said to be the value for Linux.
The TASK_IS_TASKLET() macro was moved to the proto file instead of the
type one. The proto part was a bit reordered to remove a number of ugly
forward declaration of static inline functions. About a tens of C and H
files had their dependency dropped since they were not using anything
from task.h.
global.h was one of the messiest files, it has accumulated tons of
implicit dependencies and declares many globals that make almost all
other file include it. It managed to silence a dependency loop between
server.h and proxy.h by being well placed to pre-define the required
structs, forcing struct proxy and struct server to be forward-declared
in a significant number of files.
It was split in to, one which is the global struct definition and the
few macros and flags, and the rest containing the functions prototypes.
The UNIX_MAX_PATH definition was moved to compat.h.
A few includes were missing in each file. A definition of
struct polled_mask was moved to fd-t.h. The MAX_POLLERS macro was
moved to defaults.h
Stdio used to be silently inherited from whatever path but it's needed
for list_pollers() which takes a FILE* and which can thus not be
forward-declared.
And also rename standard.c to tools.c. The original split between
tools.h and standard.h dates from version 1.3-dev and was mostly an
accident. This patch moves the files back to what they were expected
to be, and takes care of not changing anything else. However this
time tools.h was split between functions and types, because it contains
a small number of commonly used macros and structures (e.g. name_desc)
which in turn cause the massive list of includes of tools.h to conflict
with the callers.
They remain the ugliest files of the whole project and definitely need
to be cleaned and split apart. A few types are defined there only for
functions provided there, and some parts are even OS-specific and should
move somewhere else, such as the symbol resolution code.
The pretty confusing "buffer.h" was in fact not the place to look for
the definition of "struct buffer" but the one responsible for dynamic
buffer allocation. As such it defines the struct buffer_wait and the
few functions to allocate a buffer or wait for one.
This patch moves it renaming it to dynbuf.h. The type definition was
moved to its own file since it's included in a number of other structs.
Doing this cleanup revealed that a significant number of files used to
rely on this one to inherit struct buffer through it but didn't need
anything from this file at all.
types/freq_ctr.h was moved to haproxy/freq_ctr-t.h and proto/freq_ctr.h
was moved to haproxy/freq_ctr.h. Files were updated accordingly, no other
change was applied.
This one is included almost everywhere and used to rely on a few other
.h that are not needed (unistd, stdlib, standard.h). It could possibly
make sense to split it into multiple parts to distinguish operations
performed on timers and the internal time accounting, but at this point
it does not appear much important.
This one used to be stored into debug.h but the debug tools got larger
and require a lot of other includes, which can't use BUG_ON() anymore
because of this. It does not make sense and instead this macro should
be placed into the lower includes and given its omnipresence, the best
solution is to create a new bug.h with the few surrounding macros needed
to trigger bugs and place assertions anywhere.
Another benefit is that it won't be required to add include <debug.h>
anymore to use BUG_ON, it will automatically be covered by api.h. No
less than 32 occurrences were dropped.
The FSM_PRINTF macro was dropped since not used at all anymore (probably
since 1.6 or so).
All files that were including one of the following include files have
been updated to only include haproxy/api.h or haproxy/api-t.h once instead:
- common/config.h
- common/compat.h
- common/compiler.h
- common/defaults.h
- common/initcall.h
- common/tools.h
The choice is simple: if the file only requires type definitions, it includes
api-t.h, otherwise it includes the full api.h.
In addition, in these files, explicit includes for inttypes.h and limits.h
were dropped since these are now covered by api.h and api-t.h.
No other change was performed, given that this patch is large and
affects 201 files. At least one (tools.h) was already freestanding and
didn't get the new one added.
The splice() syscall has been supported in glibc since version 2.5 issued
in 2006 and is present on supported systems so there's no need for having
our own arch-specific syscall definitions anymore.
This partially reverts commit 1113116b4a ("MEDIUM: raw-sock: remove
obsolete calls to fd_{cant,cond,done}_{send,recv}") so that we can mark
the FD not ready as required since commit 19bc201c9f ("MEDIUM: connection:
remove the intermediary polling state from the connection"). Indeed, with
the removal of the latter we don't have any other reliable indication that
the FD is blocked, which explains why there are so many EAGAIN in traces.
It's worth noting that a short read or a short write are also reliable
indicators of exhausted buffers and are even documented as such in the
epoll man page in case of edge-triggered mode. That's why we also report
the FD as blocked in such a case.
With this change we completely got rid of EAGAIN in keep-alive tests, but
they were expectedly transferred to epoll_ctl:
$ ./h1load -n 100000 -t 4 -c 1000 -T 20 -F 127.0.0.1:8001/?s=1k/t=20
before:
266331 epoll_ctl 1
200000 sendto 1
200000 recvfrom 1
135757 recvfrom -1
8626 epoll_wait 1
after:
394865 epoll_ctl 1
200000 sendto 1
200000 recvfrom 1
10748 epoll_wait 1
1999 recvfrom -1
This flag is currently supported by raw_sock to perform a single recv()
attempt and avoid subscribing. Typically on the request and response
paths with keep-alive, with short messages we know that it's very likely
that the first message is enough.
Now that we know that the connection layer is transparent for polling
changes, we have no reason for hiding behind conn_xprt_stop_send() and
can safely call fd_stop_send() on the FD once the buffer is empty.
Given that raw_sock's functions solely act on connections and that all its
callers properly use subscribe() when they want to receive/send more, there
is no more reason for calling fd_{cant,cond,done}_{send,recv} anymore as
this call is immediately overridden by the subscribe call. It's also worth
noting that the purpose of fd_cond_recv() whose purpose was to speculatively
enable reading in the FD cache if the FD was active but not yet polled was
made to save on expensive epoll_ctl() calls and was implicitly covered more
cleanly by recent commit 5d7dcc2a8e ("OPTIM: epoll: always poll for recv if
neither active nor ready").
No change on the number of calls to epoll_ctl() was noticed consecutive to
this change.
The test was added before splice() and send() to make sure we never
accidently send after a shutdown, because upper layers do not all
check and it's not their job to do it. In such a case we also set
errno to EPIPE so that the error can be accurately reported, e.g.,
in health checks.
Commit 477902bd2e ("MEDIUM: connections: Get ride of the xprt_done
callback.") broke the master CLI for a very obscure reason. It happens
that short requests immediately terminated by a shutdown are properly
received, CS_FL_EOS is correctly set, but in si_cs_recv(), we refrain
from setting CF_SHUTR on the channel because CO_FL_CONNECTED was not
yet set on the connection since we've not passed again through
conn_fd_handler() and it was not done in conn_complete_session(). While
commit a8a415d31a ("BUG/MEDIUM: connections: Set CO_FL_CONNECTED in
conn_complete_session()") fixed the issue, such accident may happen
again as the root cause is deeper and actually comes down to the fact
that CO_FL_CONNECTED is lazily set at various check points in the code
but not every time we drop one wait bit. It is not the first time we
face this situation.
Originally this flag was used to detect the transition between WAIT_*
and CONNECTED in order to call ->wake() from the FD handler. But since
at least 1.8-dev1 with commit 7bf3fa3c23 ("BUG/MAJOR: connection: update
CO_FL_CONNECTED before calling the data layer"), CO_FL_CONNECTED is
always synchronized against the two others before being checked. Moreover,
with the I/Os moved to tasklets, the decision to call the ->wake() function
is performed after the I/Os in si_cs_process() and equivalent, which don't
care about this transition either.
So in essence, checking for CO_FL_CONNECTED has become a lazy wait to
check for (CO_FL_WAIT_L4_CONN | CO_FL_WAIT_L6_CONN), but that always
relies on someone else having synchronized it.
This patch addresses it once for all by killing this flag and only checking
the two others (for which a composite mask CO_FL_WAIT_L4L6 was added). This
revealed a number of inconsistencies that were purposely not addressed here
for the sake of bisectability:
- while most places do check both L4+L6 and HANDSHAKE at the same time,
some places like assign_server() or back_handle_st_con() and a few
sample fetches looking for proxy protocol do check for L4+L6 but
don't care about HANDSHAKE ; these ones will probably fail on TCP
request session rules if the handshake is not complete.
- some handshake handlers do validate that a connection is established
at L4 but didn't clear CO_FL_WAIT_L4_CONN
- the ->ctl method of mux_fcgi, mux_pt and mux_h1 only checks for L4+L6
before declaring the mux ready while the snd_buf function also checks
for the handshake's completion. Likely the former should validate the
handshake as well and we should get rid of these extra tests in snd_buf.
- raw_sock_from_buf() would directly set CO_FL_CONNECTED and would only
later clear CO_FL_WAIT_L4_CONN.
- xprt_handshake would set CO_FL_CONNECTED itself without actually
clearing CO_FL_WAIT_L4_CONN, which could apparently happen only if
waiting for a pure Rx handshake.
- most places in ssl_sock that were checking CO_FL_CONNECTED don't need
to include the L4 check as an L6 check is enough to decide whether to
wait for more info or not.
It also becomes obvious when reading the test in si_cs_recv() that caused
the failure mentioned above that once converted it doesn't make any sense
anymore: having CS_FL_EOS set while still waiting for L4 and L6 to complete
cannot happen since for CS_FL_EOS to be set, the other ones must have been
validated.
Some of these parts will still deserve further cleanup, and some of the
observations above may induce some backports of potential bug fixes once
totally analyzed in their context. The risk of breaking existing stuff
is too high to blindly backport everything.
The subscriber used to be passed as a "void *param" that was systematically
cast to a struct wait_event*. By now it appears clear that the subscribe()
call at every layer is well defined and always takes a pointer to an event
subscriber of type wait_event, so let's enforce this in the functions'
prototypes, remove the intermediary variables used to cast it and clean up
the comments to clarify what all these functions do in their context.
These ones used to serve as a set of switches between CO_FL_SOCK_* and
CO_FL_XPRT_*, and now that the SOCK layer is gone, they're always a
copy of the last know CO_FL_XPRT_* ones that is resynchronized before
I/O events by calling conn_refresh_polling_flags(), and that are pushed
back to FDs when detecting changes with conn_xprt_polling_changes().
While these functions are not particularly heavy, what they do is
totally redundant by now because the fd_want_*/fd_stop_*() actions
already perform test-and-set operations to decide to create an entry
or not, so they do the exact same thing that is done by
conn_xprt_polling_changes(). As such it is pointless to call that
one, and given that the only reason to keep CO_FL_CURR_* is to detect
changes there, we can now remove them.
Even if this does only save very few cycles, this removes a significant
complexity that has been responsible for many bugs in the past, including
the last one affecting FreeBSD.
All tests look good, and no performance regressions were observed.
CO_FL_WAIT_ROOM is set by the splicing function in raw_sock, and cleared
by the stream-int when splicing is disabled, as well as in
conn_refresh_polling_flags() so that a new call to ->rcv_pipe() could
be attempted by the I/O callbacks called from conn_fd_handler(). This
clearing in conn_refresh_polling_flags() makes no sense anymore and is
in no way related to the polling at all.
Since we don't call them from there anymore it's better to clear it
before attempting to receive, and to set it again later. So let's move
this operation where it should be, in raw_sock_to_pipe() so that it's
now symmetric. It was also placed in raw_sock_to_buf() so that we're
certain that it gets cleared if an attempt to splice is replaced with
a subsequent attempt to recv(). And these were currently already achieved
by the call to conn_refresh_polling_flags(). Now it could theorically be
removed from the stream-int.
Commit 08fa16e397 made sure
we let the fd layer we didn't want to poll anymore if
we failed to send and sendto() returne EAGAIN.
However, just disabling the polling with fd_stop_send()
while not notifying the connection layer means the
connection layer may believe the polling is activated
and nothing needs to be done when it is wrong.
A better fix is to revamp that whole code, for the
time being, just make sure the fd and connection
layer are properly synchronised.
This should fix the problem recently reported on FreeBSD.
Analysing traces revealed a rare but surprizing pattern :
connect() = -1 EAGAIN
send() = success
epoll_ctl(ADD, EPOLLOUT)
epoll_wait()
recvfrom() = success
close()
What happens is that the failed connect() creates an FD update for pollout,
but the successful synchronous send() doesn't disable it because polling was
only disabled in the FD handler. But a successful synchronous connect()
cancellation is a good opportunity to disable polling before it's effectively
enabled in the next loop, so better disable it when reaching the end. The
cost is very low if it was already disabled anyway (one atomic op).
This only affects local connections but with this the typical number of
epoll_ctl() calls per connection dropped from ~4.2 to ~3.8 for plain TCP
and 10k transfers.
In order to address the absurd polling sequence described in issue #253,
let's make sure we disable receiving on a connection until it's established.
Previously with bottom-top I/Os, we were almost certain that a connection
was ready when the first I/O was confirmed. Now we can enter various
functions, including process_stream(), which will attempt to read
something, will fail, and will then subscribe. But we don't want them
to try to receive if we know the connection didn't complete. The first
prerequisite for this is to mark the connection as not ready for receiving
until it's validated. But we don't want to mark it as not ready for sending
because we know that attempting I/Os later is extremely likely to work
without polling.
Once the connection is confirmed we re-enable recv readiness. In order
for this event to be taken into account, the call to tcp_connect_probe()
was moved earlier, between the attempt to send() and the attempt to recv().
This way if tcp_connect_probe() enables reading, we have a chance to
immediately fall back to this and read the possibly pending data.
Now the trace looks like the following. It's far from being perfect
but we've already saved one recvfrom() and one epollctl():
epoll_wait(3, [], 200, 0) = 0
socket(AF_INET, SOCK_STREAM, IPPROTO_TCP) = 7
fcntl(7, F_SETFL, O_RDONLY|O_NONBLOCK) = 0
setsockopt(7, SOL_TCP, TCP_NODELAY, [1], 4) = 0
connect(7, {sa_family=AF_INET, sin_port=htons(8000), sin_addr=inet_addr("127.0.0.1")}, 16) = -1 EINPROGRESS (Operation now in progress)
epoll_ctl(3, EPOLL_CTL_ADD, 7, {EPOLLIN|EPOLLOUT|EPOLLRDHUP, {u32=7, u64=7}}) = 0
epoll_wait(3, [{EPOLLOUT, {u32=7, u64=7}}], 200, 1000) = 1
connect(7, {sa_family=AF_INET, sin_port=htons(8000), sin_addr=inet_addr("127.0.0.1")}, 16) = 0
getsockopt(7, SOL_SOCKET, SO_ERROR, [0], [4]) = 0
sendto(7, "OPTIONS / HTTP/1.0\r\n\r\n", 22, MSG_DONTWAIT|MSG_NOSIGNAL, NULL, 0) = 22
epoll_ctl(3, EPOLL_CTL_MOD, 7, {EPOLLIN|EPOLLRDHUP, {u32=7, u64=7}}) = 0
epoll_wait(3, [{EPOLLIN|EPOLLRDHUP, {u32=7, u64=7}}], 200, 1000) = 1
getsockopt(7, SOL_SOCKET, SO_ERROR, [0], [4]) = 0
getsockopt(7, SOL_SOCKET, SO_ERROR, [0], [4]) = 0
recvfrom(7, "HTTP/1.0 200\r\nContent-length: 0\r\nX-req: size=22, time=0 ms\r\nX-rsp: id=dummy, code=200, cache=1, size=0, time=0 ms (0 real)\r\n\r\n", 16384, 0, NULL, NULL) = 126
close(7) = 0
Now that the various handshakes come with their own XPRT, there's no
need for the CONN_FL_SOCK* flags, and the conn_sock_want|stop functions,
so garbage-collect them.
Add a new method to xprt_ops, remove_xprt. When called, if the provided
xprt_ctx is the same as the xprt's underlying xprt_ctx, it then uses the
new xprt provided, otherwise it calls the remove_xprt method of the next
xprt.
The goal is to be able to add a temporary xprt, that removes itself from
the chain when it did what it had to do. This will be used to implement
a pseudo-xprt for anything that just requires a handshake (such as the
proxy protocol).
Many times we've been missing per-process traffic statistics. While it
didn't make sense in multi-process mode, with threads it does. Thus we
now have a counter of bytes emitted by raw_sock, and a freq counter for
these as well. However, freq_ctr are limited to 32 bits, and given that
loads of 300 Gbps have already been reached over a loopback using
splicing, we need to downscale this a bit. Here we're storing 1/32 of
the byte rate, which gives a theorical limit of 128 GB/s or ~1 Tbps,
which is more than enough. Let's have fun re-reading this sentence in
2029 :-) The values can be read in "show info" output on the CLI.
We've been dealing with a workaround for a bug in splice that used to
affect version 2.6.25 to 2.6.27.12 and which was fixed 10 years ago
in kernel versions which are not supported anymore. Given that people
who would use a kernel in such a range would face much more serious
stability and security issues, it's about time to get rid of this
workaround and of the ASSUME_SPLICE_WORKS build option used to disable
it.
We still have quite a number of build macros which are mapped 1:1 to a
USE_something setting in the makefile but which have a different name.
This patch cleans this up by renaming them to use the USE_something
one, allowing to clean up the makefile and make it more obvious when
reading the code what build option needs to be added.
The following renames were done :
ENABLE_POLL -> USE_POLL
ENABLE_EPOLL -> USE_EPOLL
ENABLE_KQUEUE -> USE_KQUEUE
ENABLE_EVPORTS -> USE_EVPORTS
TPROXY -> USE_TPROXY
NETFILTER -> USE_NETFILTER
NEED_CRYPT_H -> USE_CRYPT_H
CONFIG_HAP_CRYPT -> USE_LIBCRYPT
CONFIG_HAP_NS -> DUSE_NS
CONFIG_HAP_LINUX_SPLICE -> USE_LINUX_SPLICE
CONFIG_HAP_LINUX_TPROXY -> USE_LINUX_TPROXY
CONFIG_HAP_LINUX_VSYSCALL -> USE_LINUX_VSYSCALL