It makes no sense to have one pointer to the hdr_idx pool in each proxy
struct since these pools do not depend on the proxy. Let's have a common
pool instead as it is already the case for other types.
Upon an incoming soft restart request, we first pause all frontends and
peers. If the caller changes its mind and asks us to resume (eg: failed
binding), we must resume all the frontends and peers. Unfortunately the
peers were not resumed.
The code was arranged to avoid code duplication (which used to hide the
issue till now).
Peers' frontends must have logging disabled by default, which was not
the case, so logs were randomly emitted upon restart, sometimes causing
a new process to fail to replace the old one.
This was revealed with one of the very latest patches which caused
the listener_queue not to be initialized on the stats socket frontend.
And in fact a number of other ones were missing too. This is getting so
boring that now we'll always make use of the same function to initialize
any proxy. Doing so has even saved about 500 bytes on the binary due to
the avoided code redundancy.
No backport is needed.
This function is finally not needed anymore, as it has been replaced with
a per-proxy task that is scheduled when some limits are encountered on
incoming connections or when the process is stopping. The savings should
be noticeable on configs with a large number of proxies. The most important
point is that the rate limiting is now enforced in a clean and solid way.
Peers were stopped on every call to maintain_proxies when stopping=1,
while they should only be stopped once upon call to soft_stop(). This
bug has little impact, mostly increased CPU usage. It's not needed to
backport it.
Patch d9bbe17b used to limit the rate-limit to off-by-one to avoid
a busy loop when the limit is reached. Now that the listeners are
automatically disabled and queued when a limit is reached, we don't
need this workaround anymore and can bring back the most accurate
computation.
Those states have been replaced with PR_STFULL and PR_STREADY respectively,
as it is what matches them the best now. Also, two occurrences of PR_STIDLE
in peers.c have been removed as this did not provide any form of error recovery
anyway.
Now maintain_proxies() only changes proxies states and does not affect their
listeners anymore since they are autonomous. A proxy will switch between the
PR_STIDLE and PR_STRUN states depending whether it's saturated or not. Next
step will consist in renaming PR_STIDLE to PR_STFULL. This state is now only
used to report the proxy state in the stats.
All listeners that are limited by a proxy-specific resource are now
queued at the proxy's and not globally. This allows finer-grained
wakeups when releasing resource.
Managing listeners state is difficult because they have their own state
and can at the same time have theirs dictated by their proxy. The pause
is not done properly, as the proxy code is fiddling with sockets. By
introducing new functions such as pause_listener()/resume_listener(), we
make it a bit more obvious how/when they're supposed to be used. The
listen_proxies() function was also renamed to resume_proxies() since
it's only used for pause/resume.
This patch is the first in a series aiming at getting rid of the maintain_proxies
mess. In the end, proxies should not call enable_listener()/disable_listener()
anymore.
There are some very rare server-to-server applications that abuse the HTTP
protocol and expect the payload phase to be highly interactive, with many
interleaved data chunks in both directions within a single request. This is
absolutely not supported by the HTTP specification and will not work across
most proxies or servers. When such applications attempt to do this through
haproxy, it works but they will experience high delays due to the network
optimizations which favor performance by instructing the system to wait for
enough data to be available in order to only send full packets. Typical
delays are around 200 ms per round trip. Note that this only happens with
abnormal uses. Normal uses such as CONNECT requests nor WebSockets are not
affected.
When "option http-no-delay" is present in either the frontend or the backend
used by a connection, all such optimizations will be disabled in order to
make the exchanges as fast as possible. Of course this offers no guarantee on
the functionality, as it may break at any other place. But if it works via
HAProxy, it will work as fast as possible. This option should never be used
by default, and should never be used at all unless such a buggy application
is discovered. The impact of using this option is an increase of bandwidth
usage and CPU usage, which may significantly lower performance in high
latency environments.
This change should be backported to 1.4 since the first report of such a
misuse was in 1.4. Next patch will also be needed.
It's very annoying that frontend and backend stats are merged because we
don't know what we're observing. For instance, if a "listen" instance
makes use of a distinct backend, it's impossible to know what the bytes_out
means.
Some points take care of not updating counters twice if the backend points
to the frontend, indicating a "listen" instance. The thing becomes more
complex when we try to add support for server side keep-alive, because we
have to maintain a pointer to the backend used for last request, and to
update its stats. But we can't perform such comparisons anymore because
the counters will not match anymore.
So in order to get rid of this situation, let's have both frontend AND
backend stats in the "struct proxy". We simply update the relevant ones
during activity. Some of them are only accounted for in the backend,
while others are just for frontend. Maybe we can improve a bit on that
later, but the essential part is that those counters now reflect what
they really mean.
This counter will help quickly spot whether there are new errors or not.
It is also assigned to each capture so that a script can keep trace of
which capture was taken when.
This counter is incremented for each incoming connection and each active
listener, and is used to prevent haproxy from stopping upon SIGUSR1. It
will thus be possible for some tasks in increment this counter in order
to prevent haproxy from dying until they have completed their job.
Signal zero is never delivered by the system. However having a signal to
which functions and tasks can subscribe to be notified of a stopping event
is useful. So this patch does two things :
1) allow signal zero to be delivered from any function of signal handler
2) make soft_stop() deliver this signal so that tasks can be notified of
a stopping condition.
The conn_retries attribute is now assigned when switching from SI_ST_INI
to SI_ST_REQ. This eliminates one of the last dependencies on the backend
in the frontend's accept() function.
The conn_retries still lies in the session and its initialization depends
on the backend when it may not yet be known. Let's first move it to the
stream interface.
It was particularly embarrassing that the server timeout was assigned
to buffers during an accept() just to be potentially changed later in
case of a use_backend rule. The frontend side has nothing to do with
server timeouts.
Now we initialize them right after the connect() succeeds. Later this
should change for a unique stream-interface timeout setting only.
The connection timeout stored in the buffer has not been used since the
stream interface were introduced. Let's get rid of it as it's one of the
things that complicate factoring of the accept() functions.
The 'client.c' file now only contained frontend-specific functions,
so it has naturally be renamed 'frontend.c'. Same for client.h. This
has also been an opportunity to remove some cross references from
files that should not have depended on it.
In the end, this file should contain a protocol-agnostic accept()
code, which would initialize a session, task, etc... based on an
accept() from a lower layer. Right now there are still references
to TCP.
The rate-limit feature relied on a timer to define how long a frontend
must remain idle. It was not considering the pending connections, so it
was almost always ready to be used again and only the accept's limit was
preventing new connections from coming in. By accounting for the pending
connection, we can compute a correct delay and effectively make the
frontend go idle for that (short) time.
Commit 4605e3b641cebbdbb2ee5726e5bbc3c03a2d7b5e was not enough, because
connections passing from a TCP frontend to an HTTP backend without any
ACL and via a "default_backend" statement were still working on non-initialized
data. An initialization was missing in the session_set_backend() function, next
to the initialization of hdr_idx.
It's sometimes convenient to know if a proxy has processed any connection
at all when stopping it. Since a soft restart causes the "Proxy stopped"
message to be logged for each proxy, let's add the number of connections
so that it's possible afterwards to check whether a proxy had received
any connection.
Gabriel Sosa reported that logs were appearing with BADREQ when
'option httplog' was used with a TCP proxy (eg: inherited via a
default instance). This patch detects it and falls back to tcplog
after emitting a warning.
(cherry picked from commit 5f0bd6537f)
Right now, an HTTP server cannot track a TCP server and vice-versa.
This patch enables proxy tracking without relying on the proxy's mode
(tcp/http/health). It only requires a matching proxy name to exist. The
original function was renamed to findproxy_mode().
Krzysztof reported that using names only for get weight/set weight
was not enough because it's still possible to have multiple servers
with the same name (and my test config is one of those). He suggested
to be able to designate them by their unique numeric IDs by prefixing
the ID with a dash.
That way we can have :
set weight #120/#2
as well as
get weight static/srv1 10
int get_backend_server(const char *bk_name, const char *sv_name,
struct proxy **bk, struct server **sv);
This function scans the list of backends and servers to retrieve the first
backend and the first server with the given names, and sets them in both
parameters. It returns zero if either is not found, or non-zero and sets
the ones it did not found to NULL. If a NULL pointer is passed for the
backend, only the pointer to the server will be updated.
Until now it was required that every custom ID was above 1000 in order to
avoid conflicts. Now we have the list of all assigned IDs and can automatically
pick the first unused one. This means that it is perfectly possible to interleave
automatic IDs with persistent IDs and the parser will automatically allocate
unused values starting with 1.
By default, when data is sent over a socket, both the write timeout and the
read timeout for that socket are refreshed, because we consider that there is
activity on that socket, and we have no other means of guessing if we should
receive data or not.
While this default behaviour is desirable for almost all applications, there
exists a situation where it is desirable to disable it, and only refresh the
read timeout if there are incoming data. This happens on sessions with large
timeouts and low amounts of exchanged data such as telnet session. If the
server suddenly disappears, the output data accumulates in the system's
socket buffers, both timeouts are correctly refreshed, and there is no way
to know the server does not receive them, so we don't timeout. However, when
the underlying protocol always echoes sent data, it would be enough by itself
to detect the issue using the read timeout. Note that this problem does not
happen with more verbose protocols because data won't accumulate long in the
socket buffers.
When this option is set on the frontend, it will disable read timeout updates
on data sent to the client. There probably is little use of this case. When
the option is set on the backend, it will disable read timeout updates on
data sent to the server. Doing so will typically break large HTTP posts from
slow lines, so use it with caution.
LB algo macros were composed of the LB algo by itself without any indication
of the method to use to look up a server (the lb function itself). This
method was implied by the LB algo, which was not very convenient to add
more algorithms. Now we have several fields in the LB macros, some to
describe what to look for in the requests, some to describe how to transform
that (kind of algo) and some to describe what lookup function to use.
The next patch will make it possible to factor out some code for all algos
which rely on a map.
Analyser bitmaps are now stored in the frontend and backend, and
combined at configuration time. That way, set_session_backend()
does not need to perform any protocol-specific combinations.
The new statement "persist rdp-cookie" enables RDP cookie
persistence. The RDP cookie is then extracted from the RDP
protocol, and compared against available servers. If a server
matches the RDP cookie, then it gets the connection.
Since we can now switch from TCP to HTTP, we need to be able to apply
the HTTP request timeout after switching. That means we need to take
it from the backend and not from the frontend. Since the backend points
to the frontend before switching, that changes nothing for the normal
case.
This patch allows a TCP frontend to switch to an HTTP backend.
During the switch, missing structures are automatically allocated.
The HTTP parser is enabled so that the backend first waits for a
full HTTP request.
The HTTP processing has been splitted into 7 steps, one of which
is not anymore HTTP-specific (content-switching). That way, it
becomes possible to use "use_backend" rules in TCP mode. A new
"use_server" directive should follow soon.
This is a first step towards support of multiple configuration files.
Now readcfgfile() only reads a file in memory and performs very minimal
parsing. The checks are performed afterwards.
Some users want to keep the max sessions/s seen on servers, frontends
and backends for capacity planning. It's easy to grab it while the
session count is updated, so let's keep it.