When the master die, the worker should exit too, this is achieved by
checking if the FD of the socketpair/pipe was closed between the master
and the worker.
In the former architecture of the master-worker, there was only a pipe
between the master and the workers, and it was easy to check an EOF on
the pipe FD to exit() the worker.
With the new architecture, we use a socketpair by process, and this
socketpair is also used to accept new connections with the
listener_accept() callback.
This accept callback can't handle the EOF and the exit of the process,
because it's very specific to the master worker. This is why we
transformed the mworker_pipe_handler() function in a wrapper which check
if there is an EOF and exit the process, and if not call
listener_accept() to achieve the accept.
The former behavior was to exit() the master process with the latest
status code known, which was the one of the last process to exit.
The problem is that the master process was not exiting with the status
code which provoked the exit-on-failure.
The active peers output indicates both the number of established peers
connections and the number of peers connection attempts. The new counter
"ConnectedPeers" also indicates the number of currently connected peers.
This helps detect that some peers cannot be reached for example. It's
worth mentioning that this value changes over time because unused peers
are often disconnected and reconnected. Most of the time it should be
equal to ActivePeers.
Peers are the last type of activity which can maintain a job present, so
it's important to report that such an entity is still active to explain
why the job count may be higher than zero. Here by "ActivePeers" we report
peers sessions, which include both established connections and outgoing
connection attempts.
When an haproxy process doesn't stop after a reload, it's because it
still has some active "jobs", which mainly are active sessions, listeners,
peers or other specific activities. Sometimes it's difficult to troubleshoot
the cause of these issues (which generally are the result of a bug) only
because some indicators are missing.
This patch add the number of listeners, the number of jobs, and the stopping
status to the output of "show info". This way it becomes a bit easier to try
to narrow down the cause of such an issue should it happen. A typical use
case is to connect to the CLI before reloading, then issuing the "show info"
command to see what happens. In the normal situation, stopping should equal
1, jobs should equal 1 (meaning only the CLI is still active) and listeners
should equal zero.
The patch is so trivial that it could make sense to backport it to 1.8 in
order to help with troubleshooting.
The tasks API was changed in 1.9-dev1 with commit 9f6af3322 ("MINOR: tasks:
Change the task API so that the callback takes 3 arguments."), causing the
task's state not to be usable anymore and to have been replaced with an
explicit argument in the callee. The task's state doesn't contain any trace
of the wakeup cause anymore. But there were two places where the old task's
state remained in use :
- sessions, used to more accurately report timeouts in logs when seeing
TASK_WOKEN_TIMEOUT ;
- peers, used to finish resynchronization when seeing TASK_WOKEN_SIGNAL
This commit fixes both occurrences by making sure we don't access task->state
directly (should we rename it by the way ?).
No backport is needed.
This one causes some events to be lost. It has already been tested in
an experimental branch but was not merged until being certain it was
needed. Fred figured that requesting /?k=1&s=447392 from httpterm through
haproxy-master was enough to stall the transfer.
No backport is needed, this only affects 1.9-dev5.
It was reported here that authentication may fail when threads are
enabled :
https://bugzilla.redhat.com/show_bug.cgi?id=1643941
While I couldn't reproduce the issue, it's obvious that there is a
problem with the use of the non-reentrant crypt() function there.
On Linux systems there's crypt_r() but not on the vast majority of
other ones. Thus a first approach consists in placing a lock around
this crypt() call. Another patch may relax it when crypt_r() is
available.
This fix must be backported to 1.8. Thanks to Ryan O'Hara for the
quick notification.
A bug occurs when the CLI proxy of the master received a command which
is prefixed by some spaces but without a routing prefix (@).
In this case the pcli_parse_request() was returning a wrong number of
data to forward.
The response analyzer was called twice and the prompt displayed twice.
Commit 85b73e9 ("BUG/MEDIUM: stream: Make sure polling is right on retry.")
introduced a possible null dereference on the error path detected by gcc-7.
Let's simply assign srv_conn after checking the error and not before.
No backport is needed.
When the "path" sample fetch function is called without any path, the
function doesn't check that the request buffer is allocated. While this
doesn't happen with the request during processing, it can definitely
happen when mistakenly trying to reference a path from the response
since the request channel is not allocated anymore.
It's certain that this bug was emphasized by the buffer changes that
went in 1.9 and the HTTP refactoring, but at first glance, 1.8 doesn't
seem 100% safe either so it's possible that older version are affected
as well.
Thanks to PiBa-NL for reporting this bug with a reproducer.
This patch makes the cache capable of adding an "Age" header as defined by
rfc7234.
During the storage of new HTTP objects we memorize ->eoh value and
the value of the "Age" header coming from the origin server.
These information may then be reused to return the cached HTTP objects
with a new "Age" header.
May be backported to 1.8.
This patch implements analysers for parsing the CLI and extra features
for the master's CLI.
For each command (sent alone, or separated by ; or \n) the request
analyser will determine to which server it should send the request.
The 'mode cli' proxy is able to parse a prefix for each command which is
used to select the apropriate server. The prefix start by @ and is
followed by "master", the PID preceded by ! or the relative PID. (e.g.
@master, @1, @!1234). The servers are not round-robined anymore.
The command is sent with a SHUTW which force the server to close the
connection after sending its response. However the proxy allows a
keepalive connection on the client side and does not close.
The response analyser does not do much stuff, it only reinits the
connection when it received a close from the server, and forward the
response. It does not analyze the response data.
The only guarantee of the end of the response is the close of the
server, we can't rely on the double \n since it's not send by every
command.
This could be reimplemented later as a filter.
Add a struct server pointer in the mworker_proc struct so we can easily
use it as a target for the mworker proxy.
pcli_prefix_to_pid() is used to find the right PID of the worker
when using a prefix in the CLI. (@master, @#<relative pid> , @<pid>)
pcli_pid_to_server() is used to find the right target server for the
CLI proxy.
The master process does not need all the keywords of the cli, add 2
flags to chose which keyword to use.
It might be useful to activate some of them in a debug mode later...
This patch introduces mworker_cli_proxy_new_listener() which allows the
creation of new listeners for the CLI proxy.
Using this function it is possible to create new listeners from the
program arguments with -Sa <unix_socket>. It is allowed to create
multiple listeners with several -Sa.
This patch implements a listen proxy within the master. It uses the
sockpair of all the workers as servers.
In the current state of the code, the proxy is only doing round robin on
the CLI of the workers. A CLI mode will be needed to know to which CLI
send the requests.
The init code of the mworker_proc structs has been moved before the
init of the listeners.
Each socketpair is now connected to a CLI within the workers, which
allows the master to access their CLI.
The inherited flag of the worker side socketpair is removed so the
socket can be closed in the master.
There's a call there to si_cs_send() while we're supposed to come from
si_cs_io_cb() which has just done it. But in fact we can also come here
as a lower layer callback from ->wake() after a connection is established.
Since most of the time we'll end up here with either no data in the buffer
or a blocked output, let's simply check if we're already susbcribed to send
events before calling si_cs_send().
stream_int_notify() is I/O agnostic and should not wake up the tasklet,
it's up to si_cs_process() to do that, just like si_applet_wake_cb()
does it for the applet.
This one was added by commit 53216e7db ("MEDIUM: connections: Don't
directly mess with the polling from the upper layers.") after the
removal of the conditional cs_want_send() call. But after analysis
it turned out that it's not needed since the si_cs_send() call will
either succeed or subscribe.
Calling si_cs_send() alone is always dangerous because it can result
in the loss of an event if it manages to empty the buffer. Indeed, in
this case it's critical to call si_chk_rcv() on the opposite stream-int.
Given that si_cs_process() takes care of all this, let's call it instead.
All this code could possibly be refined soon to avoid redoing the whole
stream_int_notify() and do it only after a send(), but at the moment it's
not important.
With the new synchronous si_cs_send() at the end of process_stream(),
we're seeing re-appear the I/O layer specific part of the stream interface
which is supposed to deal with I/O event subscription. The only difference
is that now we subscribe to I/Os only after having attempted (and failed)
them.
This patch brings a cleanup in this by reintroducing stream_int_update_conn()
with the send code from process_stream(). However this alone would not be
enough because the flags which are cleared afterwards would result in the
loss of the possible events (write events only at the moment). So the flags
clearing and stream-int state updates are also performed inside si_update()
between the generic code and the I/O specific code. This definitely makes
sense as after this call we can simply check again for channel and SI flag
changes and decide to loop once again or not.
The rationale here is that we should never need to try to send() at the
beginning of process_stream() because :
- if something was pending, it's very unlikely that it was unblocked
and not sent just between the last poll() and the wakeup instant.
- if something pending was recently sent, then we don't have anything
to send anymore.
So at first glance it doesn't seem like there could be any valid case
where trying to send before entering the function brings any benefit.
If a buffer allocation failed, we have SI_FL_WAIT_ROOM set and c_size(buf)
being zero. It's the only moment where we have a new opportunity to try to
allocate this buffer. However we don't want to waste our time trying this
if both are non-null since it indicates missing room without any changed
condition.
Well that's only 3 places (applet.c, stream_interface.c, hlua.c). This
ensures we always clear SI_FL_WAIT_ROOM before setting it on failure,
so that it is granted that SI_FL_WAIT_ROOM always indicates a lack of
room for doing an operation, including the inability to allocate a
buffer for this.
The vars_prune() and vars_init() functions involve locking while most of
the time there is no variable at all in streams nor sessions. Let's check
for emptiness before calling these functions. Simply doing this has
increased the multithreaded performance from 1.5 to 5% depending on the
workload.
While "option prefer-last-server" only applies to non-deterministic load
balancing algorithms, 401/407 responses actually caused haproxy to prefer
the last server unconditionally.
As this breaks deterministic load balancing algorithms like uri, this
patch applies the same condition here.
Should be backported to 1.8 (together with "BUG/MINOR: only mark
connections private if NTLM is detected").
Instead of marking all connections that see a 401/407 response private
(for connection reuse), this patch detects a RFC4559/NTLM authentication
scheme and restricts the private setting to those connections.
This is so we can reuse connections with 401/407 responses with
deterministic load balancing algorithms later (which requires another fix).
This fixes the problem reported here by Elliot Barlas :
https://discourse.haproxy.org/t/unable-to-configure-load-balancing-per-request-over-persistent-connection/3144
Should be backported to 1.8.
The behaviour of the flag CF_WRITE_PARTIAL was modified by commit
95fad5ba4 ("BUG/MAJOR: stream-int: don't re-arm recv if send fails") due
to a situation where it could trigger an immediate wake up of the other
side, both acting in loops via the FD cache. This loss has caused the
need to introduce CF_WRITE_EVENT as commit c5a9d5bf, to replace it, but
both flags express more or less the same thing and this distinction
creates a lot of confusion and complexity in the code.
Since the FD cache now acts via tasklets, the issue worked around in the
first patch no longer exists, so it's more than time to kill this hack
and to restore CF_WRITE_PARTIAL's semantics (i.e.: there has been some
write activity since we last left process_stream).
This patch mostly reverts the two commits above. Only the part making
use of CF_WROTE_DATA instead of CF_WRITE_PARTIAL to detect the loss of
data upon connection setup was kept because it's more accurate and
better suited.
With this patch we avoid parsing "max-object-size" with atoi() and we store its
value as an unsigned int to prevent bad implicit conversion issues especially
when we compare it with others unsigned value (content length).