It's incorrect to send more bytes than requested, because some filters
(e.g. compression) might intentionally hold on some blocks, so DATA
blocks must not be processed past the advertised byte count. It is not
the case for headers however.
No backport is needed.
If we're blocking on mux full, mux busy or whatever, we must get out of
the loop. In legacy mode this problem doesn't exist as we can normally
return 0 but here it's not a sufficient condition to stop sending, so
we must inspect the blocking flags as well.
No backport is needed.
The way htx_xfer_blks() was used is wrong, if we receive data, we must
report everything we found, not just the headers blocks. This ways causing
the EOM to be postponed and some fast responses (or errors) to be incorrectly
delayed.
No backport is needed.
In h2_snd_buf(), when running with htx, make sure we return the amount of
data the caller specified, if we emptied the buffer, as it is what the
caller expects, and will lead to him properly consider the buffer to be
empty.
With the current design, there is always an H1 stream attached to the mux. So
after the conn_stream is detached, if we don't create a new H1 stream in
h1_process(), it is important to release the mux.
In h1_recv(), return 1 if we have data available, or if h1_recv_allowed()
failed, to be sure h1_process() is called. Also don't subscribe if our buffer
is full.
Don't always wake the tasklets subscribed to recv or send events as soon as
we had any I/O event, and don't call the wake() method if there were no
subscription, instead, wake the recv tasklet if we received data in h2_recv(),
and wake the send tasklet if we were able to send data in h2_send(), and the
buffer is not full anymore.
Only call the data_cb->wake() method if we get an error/a read 0, just in
case the stream was not subscribed to receive events.
Of course, the flag FLT_CFG_FL_HTX must be used and not
STRM_FLT_FL_HAS_FILTERS. "Fortunately", these 2 flags have the same value, so
everything worked as expected.
When reaching h2_shutr/h2_shutw, as we may have generated an empty frame,
a goaway or a rst, make sure we wake the I/O tasklet, or we may not send
what we just generated.
Also in h2_shutw(), don't forget to return if all went well, we don't want
to subscribe the h2s to wait events.
The previous code was only stopping the listeners in the master, not the
entire proxy.
Since we now have a polling loop in the master, there might be some side
effects, indeed some things that are still initialized. For example the
checks were still running.
When ssl_bc_alpn was meant to be added, a typo slipped in and as a result ssl_fc_alpn behaved as ssl_bc_alpn,
and ssl_bc_alpn was not a valid keyword. this patch aims at fixing this.
This only happens for connections using the h1 mux. We must be sure to force the
version to HTTP/1.1 when the version of the message is 1.1 or above. It is
important for H2 messages to not send an invalid version string (HTTP/2.0) to
peers.
These potential null-deref warnings are emitted on gcc 7 and above
when threads are disabled due to the use of objt_server() after an
existing validity test. Let's switch to __objt_server() since we
know the pointer is valid, it will not confuse the compiler.
Some of these may be backported to 1.8.
The loop trying to figure the best server is theorically capable of
finishing the loop with best == NULL, causing the HA_ATOMIC_SUB()
to fail there. However for this to happen the list should be empty,
which is avoided at the beginning of the function. As it is, the
function still remains at risk so better address this now.
This patch should be backported to 1.8.
Add a new keyword for servers, "idle-timeout". If set, unused connections are
kept alive until the timeout happens, and will be picked for reuse if no
other connection is available.
Add a new method to muxes, "max_streams", that returns the max number of
streams the mux can handle. This will be used to know if a mux is in use
or not.
When creating a new stream, don't bother flagging a connection with
H2_CF_DEM_TOOMANY if we created the last available stream. We won't create
any other anyway, because h2_avail_streams() would return 0 available streams,
and has it is a blocking flag, it prevents us from reading data after.
The function now calls h2c_bck_handle_headers() or h2c_frt_handle_headers()
depending on the connection's side. The former doesn't create a new stream
but feeds an existing one. At this point it's possible to forward an H2
request to a backend server and retrieve the response headers.
This function does not really depend on the request, all it does is
also valid for H2 responses found on the backend side, so this patch
renames it and makes it call the appropriate decoder based on the
direction.
This creates an H2 HEADERS frame from an HTX request. The code is
very similar to the response encoding, so probably that in the future
we'll have to factor these functions differently. The HTX's start line
type is used to decide on the direction. We also purposely error out
when trying to encode an H2 request from an H1 message since it's not
implemented.
For now it reports an immediate error when trying to encode the request
since it doesn't parse as a response. We take care of sending the preface
and settings frame with the outgoing connection, and not to wait for a
preface during the H2_CS_PREFACE phase for outgoing connections.
For the backend we'll need to allocate streams as well. Let's do this
with h2c_bck_stream_new(). The stream ID allocator was split from it
so that the caller can decide whether or not to stay on the same
connection or create a new one. It possibly isn't the best way to do
this as once we're on the mux it's too late to give up creation of a
new stream. Another approach would possibly consist in detaching muxes
that reached their connection count limit before they can be reused.
Instead of choosing the stream id as soon as the stream is created, wait
until data is about to be sent. If we don't do that, the stream may send
data out of order, and so the stream 3 may send data before the stream 1,
and then when the stream 1 will try to send data, the other end will
consider that an error, as stream ids should always be increased.
Cc: Olivier Houchard <ohouchard@haproxy.com>
We declare two configurations for the H2 mux. One supporting only
the frontend in HTTP mode and one supporting both sides in HTX mode.
This is only to ease development at this point. Trying to assign an h2
mux on the server side will still fail during h2_init() anyway instead
of at config parsing time.
Currently a mux may be forced on a bind or server line by specifying the
"proto" keyword. The problem is that the mux may depend on the proxy's
mode, which is not known when parsing this keyword, so a wrong mux could
be picked.
Let's simply update the mux entry while checking its validity. We do have
the name and the side, we only need to see if a better mux fits based on
the proxy's mode. It also requires to remove the side check while parsing
the "proto" keyword since a wrong mux could be picked.
This way it becomes possible to declare multiple muxes with the same
protocol names and different sides or modes.
If we decided to emit the end of stream flag on the H2 response headers
frame, we must remove the EOM block from the HTX stream, otherwise it
will lead to an extra DATA frame being sent with the ES flag and will
violate the protocol.