In issue #1411, @jjiang-stripe reports that do-resolve() sometimes seems
to be trying to resolve crap from random memory contents.
The issue is that action_prepare_for_resolution() tries to measure the
input string by itself using strlen(), while resolv_action_do_resolve()
directly passes it a pointer to the sample, omitting the known length.
Thus of course any other header present after the host in memory are
appended to the host value. It could theoretically crash if really
unlucky, with a buffer that does not contain any zero including in the
index at the end, and if the HTX buffer ends on an allocation boundary.
In practice it should be too low a probability to have ever been observed.
This patch modifies the action_prepare_for_resolution() function to take
the string length on with the host name on input and pass that down the
chain. This should be backported to 2.0 along with commit "MINOR:
resolvers: fix the resolv_str_to_dn_label() API about trailing zero".
This function is bogus at the API level: it demands that the input string
is zero-terminated *and* that its length *including* the trailing zero is
passed on input. While that already looks smelly, the trailing zero is
copied as-is, and is then explicitly replaced with a zero... Not only
all callers have to pass hostname_len+1 everywhere to work around this
absurdity, but this requirement causes a bug in the do-resolve() action
that passes random string lengths on input, and that will be fixed on a
subsequent patch.
Let's fix this API issue for now.
This patch will have to be backported, and in versions 2.3 and older,
the function is in dns.c and is called dns_str_to_dn_label().
Some protocols fail with "error blah [ip:port]" and other fail with
"[ip:port] error blah". All this already appears in a "starting" or
"binding" context after a proxy name. Let's choose a more universal
approach like below where the ip:port remains at the end of the line
prefixed with "for".
[WARNING] (18632) : Binding [binderr.cfg:10] for proxy http: cannot bind receiver to device 'eth2' (No such device) for [0.0.0.0:1080]
[WARNING] (18632) : Starting [binderr.cfg:10] for proxy http: cannot set MSS to 12 for [0.0.0.0:1080]
Binding errors and late socket errors provide no information about
the file and line where the problem occurs. These are all done by
protocol_bind_all() and they only report "Starting proxy blah". Let's
change this a little bit so that:
- the file name and line number of the faulty bind line is alwas mentioned
- early binding errors are indicated with "Binding" instead of "Starting".
Now we can for example have this:
[WARNING] (18580) : Binding [binderr.cfg:10] for proxy http: cannot bind receiver to device 'eth2' (No such device) [0.0.0.0:1080]
The MSS errors are the only ones not indicating what was attempted, let's
report the value that was tried, as it can help users spot them in the
config (particularly if a default value was used).
Right now only the last warning or error is reported from
tcp_bind_listener(), but it is useful to report all warnings and no only
the last one, so we now emit them delimited by commas. Previously we used
a fixed buffer of 100 bytes, which was too small to store more than one
message, so let's extend it.
Signed-off-by: Bjoern Jacke <bjacke@samba.org>
This new converter takes a JSON Web Token, an algorithm (among the ones
specified for JWS tokens in RFC 7518) and a public key or a secret, and
it returns a verdict about the signature contained in the token. It does
not simply return a boolean because some specific error cases cas be
specified by returning an integer instead, such as unmanaged algorithms
or invalid tokens. This enables to distinguich malformed tokens from
tampered ones, that would be valid format-wise but would have a bad
signature.
This converter does not perform a full JWT validation as decribed in
section 7.2 of RFC 7519. For instance it does not ensure that the header
and payload parts of the token are completely valid JSON objects because
it would need a complete JSON parser. It only focuses on the signature
and checks that it matches the token's contents.
Those converters allow to extract a JSON value out of a JSON Web Token's
header part or payload part (the two first dot-separated base64url
encoded parts of a JWS in the Compact Serialization format).
They act as a json_query call on the corresponding decoded subpart when
given parameters, and they return the decoded JSON subpart when no
parameter is given.
A JWT signed with the RSXXX or ESXXX algorithm (RSA or ECDSA) requires a
public certificate to be verified and to ensure it is valid. Those
certificates must not be read on disk at runtime so we need a caching
mechanism into which those certificates will be loaded during init.
This is done through a dedicated ebtree that is filled during
configuration parsing. The path to the public certificates will need to
be explicitely mentioned in the configuration so that certificates can
be loaded as early as possible.
This tree is different from the ckch one because ckch entries are much
bigger than the public certificates used in JWT validation process.
This helper function splits a JWT under Compact Serialization format
(dot-separated base64-url encoded strings) into its different sub
strings. Since we do not want to manage more than JWS for now, which can
only have at most three subparts, any JWT that has strictly more than
two dots is considered invalid.
The full list of possible algorithms used to create a JWS signature is
defined in section 3.1 of RFC7518. This patch adds a helper function
that converts the "alg" strings into an enum member.
This fetch can be used to retrieve the data contained in an HTTP
Authorization header when the Bearer scheme is used. This is used when
transmitting JSON Web Tokens for instance.
On receiving CONNECTION_CLOSE frame, the mux is flagged for immediate
connection close. A stream is closed even if there is data not ACKed
left if CONNECTION_CLOSE has been received.
The mux tx buffers have been rewritten with buffers attached to qcs
instances. qc_buf_available and qc_get_buf functions are updated to
manipulates qcs. All occurences of the unused qcc ring buffer are
removed to ease the code maintenance.
Defer the shutting of a qcs if there is still data in its tx buffers. In
this case, the conn_stream is closed but the qcs is kept with a new flag
QC_SF_DETACH.
On ACK reception, the xprt wake up the shut_tl tasklet if the stream is
flagged with QC_SF_DETACH. This tasklet is responsible to free the qcs
and possibly the qcc when all bidirectional streams are removed.
For the moment, a quic connection is considered dead if it has no
bidirectional streams left on it. This test is implemented via
qcc_is_dead function. It can be reused to properly close the connection
when needed.
Properly handle tx buffers management in h3 data sending. If there is
not enough contiguous space, the buffer is first realigned. If this is
not enough, the stream is flagged with QC_SF_BLK_MROOM waiting for the
buffer to be emptied.
If a frame on a stream is successfully pushed for sending, the stream is
called if it was flagged with QC_SF_BLK_MROOM.
Remove the tx mux ring buffers in qcs, which should be in the qcc. For
the moment, use a simple architecture with 2 simple tx buffers in the
qcs.
The first buffer is used by the h3 layer to prepare the data. The mux
send operation transfer these into the 2nd buffer named xprt_buf. This
buffer is only freed when an ACK has been received.
This architecture is functional but not optimal for two reasons :
- it won't limit the buffer usage by connection
- each transfer on a new stream requires an allocation
This new ssllib_name_startswith precondition check can be used to
distinguish application linked with OpenSSL from the ones linked with
other SSL libraries (LibreSSL or BoringSSL namely). This check takes a
string as input and returns 1 when the SSL library's name starts with
the given string. It is based on the OpenSSL_version function which
returns the same output as the "openssl version" command.
Set an `lua_atpanic()` handler before calling `hlua_prepend_path()` in
`hlua_config_prepend_path()`.
This prevents the process from abort()ing when `hlua_prepend_path()` fails
for some reason.
see GitHub Issue #1409
This is a very minor issue that can't happen in practice. No backport needed.
This line is not related to the response channel but to the stream. Thus it
must be indented at the same level as stream-interfaces, connections,
channels...
Filters can block the stream on pre/post analysis for any reason and it can
be useful to report it in "show sess all". So now, a "current_filter" extra
line is reported for each channel if a filter is blocking the analysis. Note
that this does not catch the TCP/HTTP payload analysis because all
registered filters are always evaluated when more data are received.
Sometimes an HTTP or TCP rule may take time to complete because it is
waiting for external data (e.g. "wait-for-body", "do-resolve"), and it
can be useful to report the action and the location of that rule in
"show sess all". Here for streams blocked on such a rule, there will
now be a "current_line" extra line reporting this. Note that this does
not catch rulesets which are re-evaluated from the start on each change
(e.g. tcp-request content waiting for changes) but only when a specific
rule is being paused.
These ones are passed on rule creation for the sole purpose of being
reported in "show sess", which is not done yet. For now the entries
are allocated upon rule creation and freed in free_act_rules().
Rules are currently allocated using calloc() by their caller, which does
not make it very convenient to pass more information such as the file
name and line number.
This patch introduces new_act_rule() which performs the malloc() and
already takes in argument the ruleset (ACT_F_*), the file name and the
line number. This saves the caller from having to assing ->from, and
will allow to improve the internal storage with more info.
There have been a large number of issues reported with conn_cur
synchronization because the concept is wrong. In an active-passive
setup, pushing the local connections count from the active node to
the passive one will result in the passive node to have a higher
counter than the real number of connections. Due to this, after a
switchover, it will never be able to close enough connections to
go down to zero. The same commonly happens on reloads since the new
process preloads its values from the old process, and if no connection
happens for a key after the value is learned, it is impossible to reset
the previous ones. In active-active setups it's a bit different, as the
number of connections reflects the number on the peer that pushed last.
This patch solves this by marking the "conn_cur" local and preventing
it from being learned from peers. It is still pushed, however, so that
any monitoring system that collects values from the peers will still
see it.
The patch is tiny and trivially backportable. While a change of behavior
in stable branches is never welcome, it remains possible to fix issues
if reports become frequent.
In the configuration sometimes we'll omit a thread group number to designate
a global thread number range, and sometimes we'll mention the group and
designate IDs within that group. The operation is more complex than it
seems due to the need to check for ranges spanning between multiple groups
and determining groups from threads from bit masks and remapping bit masks
between local/global.
This patch adds a function to perform this operation, it takes a group and
mask on input and updates them on output. It's designed to be used by "bind"
lines but will likely be usable at other places if needed.
For situations where specified threads do not exist in the group, we have
the choice in the code between silently fixing the thread set or failing
with a message. For now the better option seems to return an error, but if
it turns out to be an issue we can easily change that in the future. Note
that it should only happen with "x/even" when group x only has one thread.
This extends the "thread" statement of bind lines to support an optional
thread group number. When unspecified (0) it's an absolute thread range,
and when specified it's one relative to the thread group. Masks are still
used so no more than 64 threads may be specified at once, and a single
group is possible. The directive is not used for now.
Now thread dumps will report the thread group number and the ID within
this group. Note that this is still quite limited because some masks
are calculated based on the thread in argument while they have to be
performed against a group-level thread ID.
This is the equivalent of "tid" for ease of access. In the future if we
make th_cfg a pure thread-local array (not a pointer), it may make sense
to move it there.
ha_set_tid() was randomly used either to explicitly set thread 0 or to
set any possibly incomplete thread during boot. Let's replace it with
a pointer to a valid thread or NULL for any thread. This allows us to
check that the designated threads are always valid, and to ignore the
thread 0's mapping when setting it to NULL, and always use group 0 with
it during boot.
The initialization code is also cleaner, as we don't pass ugly casts
of a thread ID to a pointer anymore.
This will be a convenient way to communicate the thread ID and its
local ID in the group, as well as their respective bits when creating
the threads or when only a pointer is given.
This will ease the reporting of the current thread group ID when coming
from the thread itself, especially since it returns the visible ID,
starting at 1.
This takes care of unassigned threads groups and places unassigned
threads there, in a more or less balanced way. Too sparse allocations
may still fail though. For now with a maximum group number fixed to 1
nothing can really fail.
This registers a mapping of threads to groups by enumerating for each thread
what group it belongs to, and marking the group as assigned. It takes care of
checking for redefinitions, overlaps, and holes. It supports both individual
numbers and ranges. The thread group is referenced from the thread config.
This creates a struct tgroup_info which knows the thread ID of the first
thread in a group, and the number of threads in it. For now there's only
one thread group supported in the configuration, but it may be forced to
other values for development purposes by defining MAX_TGROUPS, and it's
enabled even when threads are disabled and will need to remain accessible
during boot to keep a simple enough internal API.
For the purpose of easing the configurations which do not specify a thread
group, we're starting group numbering at 1 so that thread group 0 can be
"undefined" (i.e. for "bind" lines or when binding tasks).
The goal will be to later move there some global items that must be
made per-group.
We want to make sure that the current thread_info accessed via "ti" will
remain constant, so that we don't accidentally place new variable parts
there and so that the compiler knows that info retrieved from there is
not expected to have changed between two function calls.
Only a few init locations had to be adjusted to use the array and the
rest is unaffected.
The last 3 fields were 3 list heads that are per-thread, and which are:
- the pool's LRU head
- the buffer_wq
- the streams list head
Moving them into thread_ctx completes the removal of dynamic elements
from the struct thread_info. Now all these dynamic elements are packed
together at a single place for a thread.
The TI_FL_STUCK flag is manipulated by the watchdog and scheduler
and describes the apparent life/death of a thread so it changes
all the time and it makes sense to move it to the thread's context
for an active thread.
The "thread_info" name was initially chosen to store all info about
threads but since we now have a separate per-thread context, there is
no point keeping some of its elements in the thread_info struct.
As such, this patch moves prev_cpu_time, prev_mono_time and idle_pct to
thread_ctx, into the thread context, with the scheduler parts. Instead
of accessing them via "ti->" we now access them via "th_ctx->", which
makes more sense as they're totally dynamic, and will be required for
future evolutions. There's no room problem for now, the structure still
has 84 bytes available at the end.
The scheduler contains a lot of stuff that is thread-local and not
exclusively tied to the scheduler. Other parts (namely thread_info)
contain similar thread-local context that ought to be merged with
it but that is even less related to the scheduler. However moving
more data into this structure isn't possible since task.h is high
level and cannot be included everywhere (e.g. activity) without
causing include loops.
In the end, it appears that the task_per_thread represents most of
the per-thread context defined with generic types and should simply
move to tinfo.h so that everyone can use them.
The struct was renamed to thread_ctx and the variable "sched" was
renamed to "th_ctx". "sched" used to be initialized manually from
run_thread_poll_loop(), now it's initialized by ha_set_tid() just
like ti, tid, tid_bit.
The memset() in init_task() was removed in favor of a bss initialization
of the array, so that other subsystems can put their stuff in this array.
Since the tasklet array has TL_CLASSES elements, the TL_* definitions
was moved there as well, but it's not a problem.
The vast majority of the change in this patch is caused by the
renaming of the structures.
We used to remap SI_TKILL to SI_LWP when SI_TKILL was not available
(e.g. FreeBSD) but that's ugly and since we need this only in a single
switch/case block in wdt.c it's even simpler and cleaner to perform the
two tests there, so let's do this.
The watchdog timer had no more reason for being shared with the struct
thread_info since the watchdog is the only user now. Let's remove it
from the struct and move it to a static array in wdt.c. This removes
some ifdefs and the need for the ugly mapping to empty_t that might be
subject to a cast to a long when compared to TIMER_INVALID. Now timer_t
is not known outside of wdt.c and clock.c anymore.
This removes the knowledge of clockid_t from anywhere but clock.c, thus
eliminating a source of includes burden. The unused clock_id field was
removed from thread_info, and the definition setting of clockid_t was
removed from compat.h. The most visible change is that the function
now_cpu_time_thread() now takes the thread number instead of a tinfo
pointer.