This was due to a missing check in h3_trace() about the first argument
presence (connection) and h3_parse_settings_frm() which calls TRACE_LEAVE()
without any argument. Then this argument was dereferenced.
Must be backported to 2.6
As specified by RFC 9114, multiple cookie headers must be concatenated
into a single entry before passing it to a HTTP/1.1 connection. To
implement this, reuse the same function as already used for HTTP/2
module.
This should answer to feature requested in github issue #1818.
As specified by RFC 9204, encoder and decoder streams must not be
closed. If the peer behaves incorrectly and closes one of them, emit a
H3_CLOSED_CRITICAL_STREAM connection error.
To implement this, QPACK stream decoding API has been slightly adjusted.
Firstly, fin parameter is passed to notify about FIN STREAM bit.
Secondly, qcs instance is passed via unused void* context. This allows
to use qcc_emit_cc_app() function to report a CONNECTION_CLOSE error.
As specified by RFC 9114 the control stream must not be closed. If the
peer behaves incorrectly and closes it, emit a H3_CLOSED_CRITICAL_STREAM
connection error.
Implement http-request timeout for QUIC MUX. It is used when the
connection is opened and is triggered if no HTTP request is received in
time. By HTTP request we mean at least a QUIC stream with a full header
section. Then qcs instance is attached to a sedesc and upper layer is
then responsible to wait for the rest of the request.
This timeout is also used when new QUIC streams are opened during the
connection lifetime to wait for full HTTP request on them. As it's
possible to demux multiple streams in parallel with QUIC, each waiting
stream is registered in a list <opening_list> stored in qcc with <start>
as timestamp in qcs for the stream opening. Once a qcs is attached to a
sedesc, it is removed from <opening_list>. When refreshing MUX timeout,
if <opening_list> is not empty, the first waiting stream is used to set
MUX timeout.
This is efficient as streams are stored in the list in their creation
order so CPU usage is minimal. Also, the size of the list is
automatically restricted by flow control limitation so it should not
grow too much.
Streams are insert in <opening_list> by application protocol layer. This
is because only application protocol can differentiate streams for HTTP
messaging from internal usage. A function qcs_wait_http_req() has been
added to register a request stream by app layer. QUIC MUX can then
remove it from the list in qc_attach_sc().
As a side-note, it was necessary to implement attach qcc_app_ops
callback on hq-interop module to be able to insert a stream in waiting
list. Without this, a BUG_ON statement would be triggered when trying to
remove the stream on sedesc attach. This is to ensure that every
requests streams are registered for http-request timeout.
MUX timeout is explicitely refreshed on MAX_STREAM_DATA and STOP_SENDING
frame parsing to schedule http-request timeout if a new stream has been
instantiated. It was already done on STREAM parsing due to a previous
patch.
Store the current step of HTTP message in h3s stream. This reports if we
are in the parsing of headers, content or trailers section. A new enum
h3s_st_req is defined for this.
This field is stored in h3s struct but only used for request stream. It
is left undefined for other streams (control or QPACK streams).
h3_is_frame_valid() has been extended to take into account this state
information. A connection error H3_FRAME_UNEXPECTED is reported if an
invalid frame according to the current state is received; for example a
DATA frame at the beginning of a stream.
Timeout in QUIC MUX has evolved from the simple first implementation. At
the beginning, a connection was considered dead unless bidirectional
streams were opened. This was abstracted through an app callback
is_active().
Now this paradigm has been reversed and a connection is considered alive
by default, unless an error has been reported or a timeout has already
been fired. The callback is_active() is thus not used anymore and can be
safely removed to simplify qcc_is_dead().
This commit should be backported to 2.6.
Implement graceful shutdown as specified in RFC 9114. A GOAWAY frame is
generated with stream ID to indicate range of processed requests.
This process is done via the release app protocol operation. The MUX
is responsible to emit the generated GOAWAY frame after app release. A
CONNECTION_CLOSE will be emitted once there is no unacknowledged STREAM
frames.
Store a reference to the HTTP/3 control stream in h3c context.
This will be useful to implement GOAWAY emission without having to store
the control stream ID on opening.
When MUX is released, a CONNECTION_CLOSE frame should be emitted. This
will ensure that the client does not use anymore a half-dead connection.
App protocol layer is responsible to provide the error code via release
callback. For HTTP/3 NO_ERROR is used as specified in RFC 9114. If no
release callback is provided, generic QUIC NO_ERROR code is used. Note
that a graceful shutdown is used : quic_conn must emit CONNECTION_CLOSE
frame when possible. This will be provided in another patch.
This change should limit the risk of browsers stuck on webpage loading
if MUX has been released. On CONNECTION_CLOSE reception, the client will
reopen a new QUIC connection.
Adjust qcc_emit_cc_app() to allow the delay of emission of a
CONNECTION_CLOSE. This will only set the error code but the quic-conn
layer is not flagged for immediate close. The quic-conn will be
responsible to shut the connection when deemed suitable.
This change will allow to implement application graceful shutdown, such
as HTTP/3 with GOAWAY emission. This will allow to emit closing frames
on MUX release. Once all work is done at the lower layer, the quic-conn
should emit a CONNECTION_CLOSE with the registered error code.
Rename both qcc_open_stream_local/remote() functions to
qcc_init_stream_local/remote(). This change is purely cosmetic. It will
reduces the ambiguity with the soon to be implemented OPEN states for
QCS instances.
Review the whole API used to access/instantiate qcs.
A public function qcc_open_stream_local() is available to the
application protocol layer. It allows to easily opening a local stream.
The ID is automatically attributed to the next one available.
For remote streams, qcc_open_stream_remote() has been implemented. It
will automatically take care of allocating streams in a linear way
according to the ID. This function is called via qcc_get_qcs() which can
be used for each qcc_recv*() operations. For the moment, it is only used
for STREAM frames via qcc_recv(), but soon it will be implemented for
other frames types which can also be used to open a new stream.
qcs_new() and qcs_free() has been restricted to the MUX QUIC only as
they are now reserved for internal usage.
This change is a pure refactoring and should not have any noticeable
impact. It clarifies the developer intent and help to ensure that a
stream is not automatically opened when not desired.
Emit a CONNECTION_CLOSE if HEADERS parsing function returns an error.
This is useful to remove previous ABORT_NOW guards.
For the moment, the whole connection is closed. In the future, it may be
justified to only reset the faulting stream in some cases. This requires
the implementation of RESET_STREAM emission.
In GH #1760 (which is marked as being a feature), there were compilation
errors on MacOS which could be reproduced in Linux when building 32-bit code
(-m32 gcc option). Most of them were due to variables types mixing in QUIC_MIN macro
or using size_t type in place of uint64_t type.
Must be backported to 2.6.
A pretty ugly mistake introduced recently with an invalid goto statement
which prevents QUIC compilation on haproxy.
This must be backported on 2.6 as a complement to
60ef19f137
BUG/MINOR: h3/qpack: deal with too many headers
ensures that we never insert too many entries in a headers input list.
On the decoding side, a new error QPACK_ERR_TOO_LARGE is reported in
this case.
This prevents crash if headers number on a H3 request or response is
superior to tune.http.maxhdr config value. Previously, a crash would
occur in QPACK decoding function.
Note that the process still crashes later with ABORT_NOW() because error
reporting on frame parsing is not implemented for now. It should be
treated with a RESET_STREAM frame in most cases.
This can be backported up to 2.6.
Clean up QPACK decoder API by removing dependencies on ncbuf and
MUX-QUIC. This reduces includes statements. It will also help to
implement a standalone QPACK decoder.
Function used to parse SETTINGS frame is incorrect as it does not stop
at the frame length but continue to parse beyond it. In most cases, it
will result in a connection closed with error H3_FRAME_ERROR.
This bug can be reproduced with clients that sent more than just a
SETTINGS frame on the H3 control stream. This is notably the case with
aioquic which emit a MAX_PUSH_ID after SETTINGS.
This bug has been introduced in the current dev release, by the
following patch
62eef85961
MINOR: mux-quic: simplify decode_qcs API
thus, it does not need to be backported.
BUG_ON() assertion to check for incomplete SETTINGS frame is incorrect.
It should check if frame length is greater, not smaller, than current
buffer data. Anyway, this BUG_ON() is useless as h3_decode_qcs()
prevents parsing of an incomplete frame, except for H3 DATA. Remove it
to fix this bug.
This bug was introduced in the current dev tree by commit
commit 62eef85961
MINOR: mux-quic: simplify decode_qcs API
Thus it does not need to be backported.
This fixes crashes which happen with DEBUG_STRICT=2. Most notably, this
is reproducible with clients that emit more than just a SETTINGS frame
on the H3 control stream. It can be reproduced with aioquic for example.
Convert return code to -1 when an error has been detected. This is
required since the previous API change on return value from the patch :
1f21ebdd76
MINOR: mux-quic/h3: adjust demuxing function return values
Without this, QUIC MUX won't consider the call as an error and will try
to remove one byte from the buffer. This may cause a BUG_ON failure if
the buffer is empty at this stage.
This bug was introduced in the current dev tree. Does not need to be
backported.
Clean the API used by decode_qcs() and transcoder internal functions.
Parsing functions now returns a ssize_t which represents the number of
consumed bytes or a negative error code. The total consumed bytes is
returned via decode_qcs().
The API is now unified and cleaner. The MUX can thus simply use the
return value of decode_qcs() instead of substracting the data bytes in
the buffer before and after the call. Transcoders functions are not
anymore obliged to remove consumed bytes from the buffer which was not
obvious.
Slightly modify decode_qcs function used by transcoders. The MUX now
gives a buffer instance on which each transcoder is free to work on it.
At the return of the function, the MUX removes consume data from its own
buffer.
This reduces the number of invocation to qcs_consume at the end of a
full demuxing process. The API is also cleaner with the transcoders not
responsible of calling it with the risk of having the input buffer
freed if empty.
As a mirror to qcc/qcs types, add a h3c pointer into h3s struct. This
should help to clean up H3 code and avoid to use qcs.qcc.ctx to retrieve
the h3c instance.
When parsing QPACK encoder/decoder streams, h3_decode_qcs() displays an
error trace if they are empty. Change the return code used in QPACK code
to avoid this trace.
To uniformize with MUX/H3 code, 0 is now used to indicate success.
Beyond this spurious error trace, this bug has no impact.
The H3 frame demuxing code is incorrect when receiving a STREAM frame
which contains only a new H3 frame header without its payload.
In this case, the check on frames bigger than the buffer size is
incorrect. This is because the buffer has been freed via
qcs_consume()/qc_free_ncbuf() as it was emptied after H3 frame header
parsing. This causes the connection to be incorrectly closed with
H3_EXCESSIVE_LOAD error.
This bug was reproduced with xquic client on the interop and with the
command-line invocation :
$ ./interop_client -l d -k $SSLKEYLOGFILE -a <addr> -p <port> -D /tmp \
-A h3 -U https://<addr>:<port>/hello_world.txt
Note also that h3_is_frame_valid() invocation has been moved before the
new buffer size check. This ensures that first we check the frame
validity before returning from the function. It's also better
positionned as this is only needed when a new H3 frame header has been
parsed.
The H3 demuxing code was not fully correct. After parsing the H3 frame
header, the check between frame length and buffer data is wrong as we
compare a copy of the buffer made before the H3 header removal.
Fix this by improving the H3 demuxing code API. h3_decode_frm_header()
now uses a ncbuf instance, this prevents an unnecessary cast
ncbuf/buffer in h3_decode_qcs() which resolves this error.
This bug was not triggered at this moment. Its impact should be really
limited.
Remove an unneeded BUG_ON statement when find_http_meth() returns
HTTP_METH_OTHER.
This fix is necessary to support requests with unusual methods with
DEBUG_STRICT activated. This was detected when browsing with HTTP/3 over
a nextcloud instance which uses PROPFIND method for Webdav.
Add ->inc_err_cnt new callback to qcc_app_ops struct which can
be called from xprt to increment the application level error code counters.
It take the application context as first parameter to be generic and support
new QUIC applications to come.
Add h3_stats.c module with counters for all the frame types and error codes.
Function arguments and local variables called "cs" were renamed to "sc"
to avoid future confusion. The "nb_cs" stream-connector counter was
renamed to "nb_sc" and qc_attach_cs() was renamed to qc_attach_sc().
There's no more reason for keepin the code and definitions in conn_stream,
let's move all that to stconn. The alphabetical ordering of include files
was adjusted.
The function doesn't return a pointer to the mux but to the mux stream
(h1s, h2s etc). Let's adjust its name to reflect this. It's rarely used,
the name can be enlarged a bit. And of course s/cs/sc to accommodate for
the updated name.
This renames the "struct conn_stream" to "struct stconn" and updates
the descriptions in all comments (and the rare help descriptions) to
"stream connector" or "connector". This touches a lot of files but
the change is minimal. The local variables were not even renamed, so
there's still a lot of "cs" everywhere.
Bring some improvment to h3_parse_settings_frm() function. The first one
is the parsing which now manipulates a buffer instead of a plain char*.
This is more to unify with other parsing functions rather than dealing
with data wrapping : it's unlikely to happen as SETTINGS is only
received as the first frame on the control STREAM.
Various errors are now properly reported as connection error :
* on incomplete frame payload
* on a duplicated settings in the same frame
* on reserved settings receive
As specified by HTTP/3 draft, an unknown unidirectional stream can be
aborted. To do this, use a new flag QC_SF_READ_ABORTED. When the MUX
detects this flag, QCS instance is automatically freed.
Previously, such streams were instead automatically drained. By aborting
them, we economize some useless memcpy instruction. On future data
reception, QCS instance is not found in the tree and considered as
already closed. The frame payload is thus deleted without copying it.
Remove all unnecessary bits of code for H3 unidirectional streams. Most
notable, an individual tasklet is not require anymore for each stream.
This is useless since the merge of RX/TX uni streams handling with
bidirectional streams code.
The whole QUIC stack is impacted by this change :
* at quic-conn level, a single function is now used to handle uni and
bidirectional streams. It uses qcc_recv() function from MUX.
* at MUX level, qc_recv() io-handler function does not skip uni streams
* most changes are conducted at app layer. Most notably, all received
data is handle by decode_qcs operation.
Now that decode_qcs is the single app read function, the H3 layer can be
simplified. Uni streams parsing was extracted from h3_attach_ruqs() to
h3_decode_qcs().
h3_decode_qcs() is able to deal with all HTTP/3 frame types. It first
check if the frame is valid for the H3 stream type. Most notably,
SETTINGS parsing was moved from h3_control_recv() into h3_decode_qcs().
This commit has some major benefits besides removing duplicated code.
Mainly, QUIC flow control is now enforced for uni streams as with bidi
streams. Also, an unknown frame received on control stream does not set
an error : it is now silently ignored as required by the specification.
Some cleaning in H3 code is already done with this patch :
h3_control_recv() and h3_attach_ruqs() are removed as they are now
unused. A final patch should clean up the unneeded remaining bit.
Define a new function h3_parse_uni_stream_no_h3(). It can be used to
handle the payload of streams which does not convey H3 frames. This is
mainly useful for QPACK encoder/decoder streams. It can also be used for
a stream of unknown type which should be drain without parsing it.
This patch is useful to extract code in a dedicated function. It will be
simple to reuse it in h3_decode_qcs() when uni-streams reception is
unify with bidirectional streams, without using dedicated stream tasklet.
Define a new function h3_is_frame_valid(). It returns if a frame is
valid or not depending on the stream which received it.
For the moment, it is used in h3_decode_qcs() which only deals with
bidirectional streams. Soon, uni streams will use the same function,
rendering the frame type check useful.
Define a new function h3_init_uni_stream(). This can be used to read the
stream type of an unidirectional stream. There is no functional change
with previous code.
This patch will be useful to unify reception for uni streams with
bidirectional ones.
Define a new enum h3s_t. This is used to differentiate between the
different stream types used in a HTTP/3 connection, including the QPACK
encoder/decoder streams.
For the moment, only bidirectional streams is positioned. This patch
will be useful to unify reception of uni streams with bidirectional
ones.
Replace h3_uqs type by qcs in stream callbacks. This change is done in
the context of unification between bidi and uni-streams. h3_uqs type
will be unneeded when this is achieved.
Remove the unneeded skip over unidirectional streams in qc_send(). This
unify sending for both uni and bidi streams.
In fact, the only local unidirectional streams in use for the moment is
the H3 Control stream responsible of SETTINGS emission. The frame was
already properly generated in qcs.tx.buf, but not send due to stream
skip in qc_send(). Now, there is no need to ignore uni streams so remove
this condition.
This fixes the emission of H3 settings which is now properly emitted.
Uni and bidi streams use the same set of funtcions for sending. One of
the most notable gain is that flow-control is now enforced for uni
streams.
The whole frame payload must have been received to demux a H3 frames,
except for H3 DATA which can be fragmented into multiple HTX blocks.
If the frame is bigger than the buffer and is not a DATA frame, a
connection error is reported with error H3_EXCESSIVE_LOAD.
This should be completed in the future with the H3 settings to limit the
size of uncompressed header section.
This code is more generic : it can handle every H3 frames. This is done
in order to be able to use h3_decode_qcs() to demux both uni and bidir
streams.
The only change is that the H3_CF_SETTINGS_SENT flag if-condition is
replaced by a BUG_ON statement. This may help to catch multiple calls on
h3_control_send() instead of silently ignore them.
h3_parse_settings_frm() read one byte after the frame payload. Fix the
parsing code. In most cases, this has no impact as we are inside an
allocated buffer but it could cause a segfault depending on the buffer
alignment.
struct h3 represents the whole HTTP/3 connection. A new type h3s was
recently introduced to represent a single HTTP/3 stream. To facilitate
the analogy with other haproxy code, most notable in MUX, rename h3 type
to h3c.
h3_b_dup() is used to obtains a ncbuf representation into a struct
buffer. ncbuf can thus be marked as a const parameter. This will allows
function which already manipulates a const ncbuf to use it.
Send MAX_STREAM_DATA frames when at least half of the allocated
flow-control has been demuxed, frame and cleared. This is necessary to
support QUIC STREAM with received data greater than a buffer.
Transcoders must use the new function qcc_consume_qcs() to empty the QCS
buffer. This will allow to monitor current flow-control level and
generate a MAX_STREAM_DATA frame if required. This frame will be emitted
via qc_io_cb().
Flag QCS if HTX buffer is full on demux. This will block all future
operations on QCS demux and should limit unnecessary decode_qcs() calls.
The flag is cleared on rcv_buf operation called by conn-stream.
Previously, H3 demuxer refused to proceed the payload if the frame was
not entirely received and the QCS buffer is not full. This code was
duplicated from the H2 demuxer.
In H2, this is a justified optimization as only one frame at a time can
be demuxed. However, this is not the case in H3 with interleaved frames
in the lower layer QUIC STREAM frames.
This condition is now removed. H3 demuxer will proceed payload as soon
as possible. An exception is kept for HEADERS frame as the code is not
able to deal with partial HEADERS.
With this change, H3 demuxer should consume less memory. To ensure that
we never received a HEADER bigger than the RX buffer, we should use the
H3 SETTINGS_MAX_FIELD_SECTION_SIZE.
This commit is the equivalent for uni-streams of previous commit
MEDIUM: mux-quic/h3/hq-interop: use ncbuf for bidir streams
All unidirectional streams data is now handle in MUX Rx ncbuf. The
obsolete buffer is not unused and will be cleared in the following
patches.
Add a ncbuf for data reception on qcs. Thanks to this, the MUX is able
to buffered all received frame directly into the buffer. Flow control
parameters will be used to ensure there is never an overflow.
This change will simplify Rx path with the future deletion of acked
frames tree previously used for frames out of order.
HTTP/3 implementation must ignore unknown frame type to support protocol
evolution. Clients can deliberately use unknown type to test that the
server is conformant : this principle is called greasing.
Quiche client uses greasing on H3 frame type with a zero length frame.
This reveals a bug in H3 parsing code which causes the transfer to be
interrupted. Fix this by removing the break statement on ret variable.
Now the parsing loop is only interrupted if input buffer is empty or the
demux is blocked.
This should fix http/3 freeze transfers with the quiche client. Thanks
to Lucas Pardue from Cloudflare for his report on the bug. Frédéric
Lecaille quickly found the source of the problem which helps me to write
this patch.
If the request channel buffer is full, H3 demuxing must be interrupted
on the stream until some read is performed. This condition is reported
if the HTX stream buffer qcs.rx.app_buf is full.
In this case, qcs instance is marked with a new flag QC_SF_DEM_FULL.
This flag cause the H3 demuxing to be interrupted. It is cleared when
the HTX buffer is read by the conn-stream layer through rcv_buf
operation.
When the flag is cleared, the MUX tasklet is woken up. However, as MUX
iocb does not treat Rx for the moment, this is useless. It must be fix
to prevent possible freeze on POST transfers.
In practice, for the moment the HTX buffer is never full as the current
Rx code is limited by the quic-conn receive buffer size and the
incomplete flow-control implementation. So for now this patch is not
testable under the current conditions.
Add a loop in the bidi STREAM function. This will call repeatdly
qcc_decode_qcs() and dequeue buffered frames.
This is useful when reception of more data is interrupted because the
MUX buffer was full. qcc_decode_qcs() has probably free some space so it
is useful to immediatly retry reception of buffered frames of the qcs
tree.
This may fix occurences of stalled Rx transfers with large payload.
Note however that there is still room for improvment. The conn-stream
layer is not able at this moment to retrigger demuxing. This is because
the mux io-handler does not treat Rx : this may continue to cause
stalled tranfers.
Previously, h3 layer was not able to demux a DATA frame if not fully
received in the Rx buffer. This causes evident limitation and prevents
to be able to demux a frame bigger than the buffer.
Improve h3_data_to_htx() to support partial frame demuxing. The demux
state is preserved in the h3s new fields : this is useful to keep the
current type and length of the demuxed frame.
Define a new structure h3s used to provide context for a H3 stream. This
structure is allocated and stored in the qcs thanks to previous commit
which provides app-layer context storage.
For now, h3s is empty. It will soon be completed to be able to support
stateful demux : this is required to be able to demux an incomplete
frame if the rx buffer is full.
Edit the functions used for HEADERS and DATA parsing. They now return
the number of bytes handled.
This change will help to demux H3 frames bigger than the buffer.
Handle wrapping buffer in h3_data_to_htx(). If data is wrapping, first
copy the contiguous data, then copy the data in front of the buffer.
Note that h3_headers_to_htx() is not able to handle wrapping data. For
the moment, a BUG_ON was added as a reminder. This cas never happened,
most probably because HEADERS is the first frame of the stream.
Always set HTX flag HTX_SL_F_XFER_LEN for http/3. This is correct
becuase the size of H3 requests is always known thanks to the protocol
framing.
This may fix occurences of incomplete POST requests when the client side
of the connection has been closed before.
The conn-stream endpoint is now shared between the conn-stream and the
applet or the multiplexer. If the mux or the applet is created first, it is
responsible to also create the endpoint and share it with the conn-stream.
If the conn-stream is created first, it is the opposite.
When the endpoint is only owned by an applet or a mux, it is called an
orphan endpoint (there is no conn-stream). When it is only owned by a
conn-stream, it is called a detached endpoint (there is no mux/applet).
The last entity that owns an endpoint is responsible to release it. When a
mux or an applet is detached from a conn-stream, the conn-stream
relinquishes the endpoint to recreate a new one. This way, the endpoint
state is never lost for the mux or the applet.
Some CS flags, only related to the endpoint, are moved into the endpoint
struct. More will probably moved later. Those ones are not critical. So it
is pretty safe to move them now and this will ease next changes.
Group the endpoint target of a conn-stream, its context and the associated
flags in a dedicated structure in the conn-stream. It is not inlined in the
conn-stream structure. There is a dedicated pool.
For now, there is no complexity. It is just an indirection to get the
endpoint or its context. But the purpose of this structure is to be able to
share a refcounted context between the mux and the conn-stream. This way, it
will be possible to preserve it when the mux is detached from the
conn-stream.
This change is only significant for the multiplexer part. For the applets,
the context and the endpoint are the same. Thus, there is no much change. For
the multiplexer part, the connection was used to set the conn-stream
endpoint and the mux's stream was the context. But it is a bit strange
because once a mux is installed, it takes over the connection. In a
wonderful world, the connection should be totally hidden behind the mux. The
stream-interface and, in a lesser extent, the stream, still access the
connection because that was inherited from the pre-multiplexer era.
Now, the conn-stream endpoint is the mux's stream (an opaque entity for the
conn-stream) and the connection is the context. Dedicated functions have
been added to attached an applet or a mux to a conn-stream.
qcs by_id field has been replaced by a new field named "id". Adjust the
h3_debug_printf traces. This is the case since the introduction of the
qc_stream_desc type.
Add a new app layer operation is_active. This can be used by the MUX to
check if the connection can be considered as active or not. This is used
inside qcc_is_dead as a first check.
For example on HTTP/3, if there is at least one bidir client stream
opened the connection is active. This explicitly ignore the uni streams
used for control and qpack as they can never be closed during the
connection lifetime.
This one has been detected by valgrind:
==2179331== Conditional jump or move depends on uninitialised value(s)
==2179331== at 0x1B6EDE: qcs_notify_recv (mux_quic.c:201)
==2179331== by 0x1A17C5: qc_handle_uni_strm_frm (xprt_quic.c:2254)
==2179331== by 0x1A1982: qc_handle_strm_frm (xprt_quic.c:2286)
==2179331== by 0x1A2CDB: qc_parse_pkt_frms (xprt_quic.c:2550)
==2179331== by 0x1A6068: qc_treat_rx_pkts (xprt_quic.c:3463)
==2179331== by 0x1A6C3D: quic_conn_app_io_cb (xprt_quic.c:3589)
==2179331== by 0x3AA566: run_tasks_from_lists (task.c:580)
==2179331== by 0x3AB197: process_runnable_tasks (task.c:883)
==2179331== by 0x357E56: run_poll_loop (haproxy.c:2750)
==2179331== by 0x358366: run_thread_poll_loop (haproxy.c:2921)
==2179331== by 0x3598D2: main (haproxy.c:3538)
==2179331==
Implement the release app-ops ops for H3 layer. This is used to clean up
uni-directional streams and the h3 context.
This prevents a memory leak on H3 resources for each connection.
Regroup some cleaning operations inside a new function qcs_free. This
can be used for all streams, both through qcs_destroy and with
uni-directional streams.
H3_DEBUG definition is removed from h3.c similarly to the commit
d96361b270
CLEANUP: qpack: suppress by default stdout traces
Also, a plain fprintf in h3_snd_buf has been replaced to be conditional
to the H3_DEBUG definition.
These changes reduces the default output on stdout with QUIC traffic.
Thanks to all previous changes, it is now possible to move the
stream-interface into the conn-stream. To do so, some SI functions are
removed and their conn-stream counterparts are added. In addition, the
conn-stream is now responsible to create and release the
stream-interface. While the stream-interfaces were inlined in the stream
structure, there is now a pointer in the conn-stream. stream-interfaces are
now dynamically allocated. Thus a dedicated pool is added. It is a temporary
change because, at the end, the stream-interface structure will most
probably disappear.
Some variables were only checked via BUG_ON macro. If compiling without
DEBUG_STRICT, this instruction is a noop. Fix this by using an explicit
condition + ABORT_NOW.
This should fix the github issue #1549.
Inspect return code of HEADERS/DATA parsing functions and use a BUG_ON
to signal an error. The stream should be closed to handle the error
in a more clean fashion.
Add a new function h3_data_to_htx. This function is used to parse a H3
DATA frame and copy it in the mux stream HTX buffer. This is required to
support HTTP POST data.
Note that partial transfers if the HTX buffer is fulled is not properly
handle. This causes large DATA transfer to fail at the moment.
Move the HEADERS parsing code outside of generic h3_decode_qcs to a new
dedicated function h3_headers_to_htx. The benefit will be visible when
other H3 frames parsing will be implemented such as DATA.
Adjust the method to detect that a H3 HEADERS frame is the last one of
the stream. If this is true, the flags EOM and BODYLESS must be set on
the HTX message.
Pass the H3 frame length to QPACK decoding instead of the length of the
whole buffer.
Without this fix, if there is multiple H3 frames starting with a
HEADERS, QPACK decoding will be erroneously applied over all of them,
most probably leading to a decoding error.