The 4 pollers all contain the same code used to compute the poll timeout.
This is pointless, let's centralize this into fd.h. This also gets rid of
the useless SCHEDULER_RESOLUTION macro which used to work arond a very old
linux 2.2 bug causing select() to wake up slightly before the timeout.
In _update_fd(), if the fd wasn't polled, and we don't want it to be polled,
we just returned 0, however, we should return changes instead, or all previous
changes will be lost.
This should be backported to 1.8.
The current synchronization point enforces certain restrictions which
are hard to workaround in certain areas of the code. The fact that the
critical code can only be called from the sync point itself is a problem
for some callback-driven parts. The "show fd" command for example is
fragile regarding this.
Also it is expensive in terms of CPU usage because it wakes every other
thread just to be sure all of them join to the rendez-vous point. It's a
problem because the sleeping threads would not need to be woken up just
to know they're doing nothing.
Here we implement a different approach. We keep track of harmless threads,
which are defined as those either doing nothing, or doing harmless things.
The rendez-vous is used "for others" as a way for a thread to isolate itself.
A thread then requests to be alone using thread_isolate() when approaching
the dangerous area, and then waits until all other threads are either doing
the same or are doing something harmless (typically polling). The function
only returns once the thread is guaranteed to be alone, and the critical
section is terminated using thread_release().
When composing the event list for subscribe to kqueue events, the index
where the new event is added must be after the previous events, as such
the changes counter should continue counting.
This caused haproxy to accept connections but not try read and process
the incoming data.
This patch is for 1.9 only
The polled_mask is only used in the pollers, and removing it from the
struct fdtab makes it fit in one 64B cacheline again, on a 64bits machine,
so make it a separate array.
With the old model, any fd shared by multiple threads, such as listeners
or dns sockets, would only be updated on one threads, so that could lead
to missed event, or spurious wakeups.
To avoid this, add a global list for fd that are shared, using the same
implementation as the fd cache, and only remove entries from this list
when every thread as updated its poller.
[wt: this will need to be backported to 1.8 but differently so this patch
must not be backported as-is]
When adding new events using kevent(), if there's an error, because we're
trying to delete an event that wasn't there, or because the fd has already
been closed, kevent() will either add an event in the eventlist array if
there's enough room for it, and keep on handling other events, or stop and
return -1.
We want it to process all the events, so give it a large-enough array to
store any error.
Special thanks to PiBa-NL for diagnosing the root cause of this bug.
This should be backported to 1.8.
Clearing the update_mask bit in fd_insert may lead to duplicate insertion
of fd in fd_updt, that could lead to a write past the end of the array.
Instead, make sure the update_mask bit is cleared by the pollers no matter
what.
This should be backported to 1.8.
[wt: warning: 1.8 doesn't have the lockless fdcache changes and will
require some careful changes in the pollers]
Maxfd is really only useful to poll() and select(), yet epoll and
kqueue reference it almost by mistake :
- cloning of the initial FDs (maxsock should be used here)
- max polled events, it's maxpollevents which should be used here.
Let's fix these places.
This is the same patch than the previous one ("BUILD: epoll/threads: Add test on
MAX_THREADS to avoid warnings when complied without threads ").
It should be backported in 1.8 with the commit 7a2364d4 ("BUG/MEDIUM:
kqueue/threads: use one kqueue_fd per thread").
in deinit_kqueue_per_thread, kqueue_fd[tid] must be closed, except for the main
thread (the first one, tid==0).
This patch must be backported in 1.8 with commit 7a2364d4.
This is the same principle as the previous patch (BUG/MEDIUM:
epoll/threads: use one epoll_fd per thread) except that this time it's
for kqueue. We don't want all threads to wake up because of activity on
a single other thread that the other ones are not interested in.
Just like with previous patch, this one shows that the polling state
doesn't need to be changed here and that some simplifications are now
possible. This patch only implements the minimum required for a stable
backport.
This should be backported to 1.8.
Since the fd update tables are per-thread, we need to have a bit per
thread to indicate whether an update exists, otherwise this can lead
to lost update events every time multiple threads want to update the
same FD. In practice *for now*, it only happens at start time when
listeners are enabled and ask for polling after facing their first
EAGAIN. But since the pollers are still shared, a lost event is still
recovered by a neighbor thread. This will not reliably work anymore
with per-thread pollers, where it has been observed a few times on
startup that a single-threaded listener would not always accept
incoming connections upon startup.
It's worth noting that during this code review it appeared that the
"new" flag in the fdtab isn't used anymore.
This fix should be backported to 1.8.
A number of counters have been added at special places helping better
understanding certain bug reports. These counters are maintained per
thread and are shown using "show activity" on the CLI. The "clear
counters" commands also reset these counters. The output is sent as a
single write(), which currently produces up to about 7 kB of data for
64 threads. If more counters are added, it may be necessary to write
into multiple buffers, or to reset the counters.
To backport to 1.8 to help collect more detailed bug reports.
kqueue fd's are not shared with children after fork(), so the children
don't have to close them, and it may in fact be dangerous, because we may
end up closing a totally unrelated fd.
[wt: to be backported to 1.8 where master-worker broke on this, and
likely to older versions for completeness]
It was a leftover from the last cleaning session; this mask applies
to threads and calling it process_mask is a bit confusing. It's the
same in fd, task and applets.
There was a flaw in the way the threads was created. the main one was just used
to create all the others and just wait to exit. Now, it is used to run a poll
loop. So we only create nbthread-1 threads.
This also fixes a bug about the compression filter when there is only 1 thread
(nbthread == 1 or no threads support). The bug was in the way thread-local
resources was initialized. per-thread init/deinit callbacks were never called
for the main process. So, with nthread set to 1, some buffers remained
uninitialized.
Many changes have been made to do so. First, the fd_updt array, where all
pending FDs for polling are stored, is now a thread-local array. Then 3 locks
have been added to protect, respectively, the fdtab array, the fd_cache array
and poll information. In addition, a lock for each entry in the fdtab array has
been added to protect all accesses to a specific FD or its information.
For pollers, according to the poller, the way to manage the concurrency is
different. There is a poller loop on each thread. So the set of monitored FDs
may need to be protected. epoll and kqueue are thread-safe per-se, so there few
things to do to protect these pollers. This is not possible with select and
poll, so there is no sharing between the threads. The poller on each thread is
independant from others.
Finally, per-thread init/deinit functions are used for each pollers and for FD
part for manage thread-local ressources.
Now, you must be carefull when a FD is created during the HAProxy startup. All
update on the FD state must be made in the threads context and never before
their creation. This is mandatory because fd_updt array is thread-local and
initialized only for threads. Because there is no pollers for the main one, this
array remains uninitialized in this context. For this reason, listeners are now
enabled in run_thread_poll_loop function, just like the worker pipe.
kevent() always sets EV_EOF with EVFILT_READ to notify of a read shutdown
and EV_EOF with EVFILT_WRITE to notify of a write error. Let's check this
flag to properly update the FD's polled status (FD_POLL_HUP and FD_POLL_ERR
respectively).
It's worth noting that this one can be coupled with a regular read event
to notify about a pending read followed by a shutdown, but for now we only
use this to set the relevant flags (HUP and ERR).
The poller now exhibits the flag HAP_POLL_F_RDHUP to indicate this new
capability.
An improvement may consist in not setting FD_POLL_IN when the "data"
field is null since it normally only reflects the amount of pending
data.
After commit e852545 ("MEDIUM: polling: centralize polled events processing")
all pollers stopped to explicitly check the FD's polled status, except the
kqueue poller which is constructed a bit differently. It doesn't seem possible
to cause any issue such as missing an event however, but anyway it's better to
definitely get rid of this since the event filter already provides the event
direction.
We'll need to differenciate between pollers which can report hangup at
the same time as read (POLL_RDHUP) from the other ones, because only
these ones may benefit from the fd_done_recv() optimization. Epoll has
had support for EPOLLRDHUP since Linux 2.6.17 and has always been used
this way in haproxy, so now we only set the flag once we've observed it
once in a response. It means that some initial requests may try to
perform a second recv() call, but after the first closed connection it
will be enough to know that the second call is not needed anymore.
Later we may extend these flags to designate event-triggered pollers.
In C89, "void *" is automatically promoted to any pointer type. Casting
the result of malloc/calloc to the type of the LHS variable is therefore
unneeded.
Most of this patch was built using this Coccinelle patch:
@@
type T;
@@
- (T *)
(\(lua_touserdata\|malloc\|calloc\|SSL_get_app_data\|hlua_checkudata\|lua_newuserdata\)(...))
@@
type T;
T *x;
void *data;
@@
x =
- (T *)
data
@@
type T;
T *x;
T *data;
@@
x =
- (T *)
data
Unfortunately, either Coccinelle or I is too limited to detect situation
where a complex RHS expression is of type "void *" and therefore casting
is not needed. Those cases were manually examined and corrected.
The poll() functions have become a bit dirty because they now check the
size of the signal queue, the FD cache and the number of tasks. It's not
their job, this must be moved to the caller. In the end it simplifies the
code because the expiration date is now set to now_ms if we must not wait,
and this achieves in exactly the same result and is cleaner. The change
looks large due to the change of indent for blocks which were inside an
"if" block.
In order for HTTP/2 not to eat too much memory, we'll have to support
on-the-fly buffer allocation, since most streams will have an empty
request buffer at some point. Supporting allocation on the fly means
being able to sleep inside I/O callbacks if a buffer is not available.
Till now, the I/O callbacks were called from two locations :
- when processing the cached events
- when processing the polled events from the poller
This change cleans up the design a bit further than what was started in
1.5. It now ensures that we never call any iocb from the poller itself
and that instead, events learned by the poller are put into the cache.
The benefit is important in terms of stability : we don't have to care
anymore about the risk that new events are added into the poller while
processing its events, and we're certain that updates are processed at
a single location.
To achieve this, we now modify all the fd_* functions so that instead of
creating updates, they add/remove the fd to/from the cache depending on
its state, and only create an update when the polling status reaches a
state where it will have to change. Since the pollers make use of these
functions to notify readiness (using fd_may_recv/fd_may_send), the cache
is always up to date with the poller.
Creating updates only when the polling status needs to change saves a
significant amount of work for the pollers : a benchmark showed that on
a typical TCP proxy test, the amount of updates per connection dropped
from 11 to 1 on average. This also means that the update list is smaller
and has more chances of not thrashing too many CPU cache lines. The first
observed benefit is a net 2% performance gain on the connection rate.
A second benefit is that when a connection is accepted, it's only when
we're processing the cache, and the recv event is automatically added
into the cache *after* the current one, resulting in this event to be
processed immediately during the same loop. Previously we used to have
a second run over the updates to detect if new events were added to
catch them before waking up tasks.
The next gain will be offered by the next steps on this subject consisting
in implementing an I/O queue containing all cached events ordered by priority
just like the run queue, and to be able to leave some events pending there
as long as needed. That will allow us *not* to perform some FD processing
if it's not the proper time for this (typically keep waiting for a buffer
to be allocated if none is available for an recv()). And by only processing
a small bunch of them, we'll allow priorities to take place even at the I/O
level.
As a result of this change, functions fd_alloc_or_release_cache_entry()
and fd_process_polled_events() have disappeared, and the code dedicated
to checking for new fd events after the callback during the poll() loop
was removed as well. Despite the patch looking large, it's mostly a
change of what function is falled upon fd_*() and almost nothing was
added.
This function is used to compute the new polling state based on
the previous state. All pollers have to do this in their update
loop, so better centralize the logic for it.
Currently, each poll loop handles the polled events the same way,
resulting in a lot of duplicated, complex code. Additionally, epoll
was the only one to handle newly created FDs immediately.
So instead, let's move that code to fd.c in a new function dedicated
to this task : fd_process_polled_events(). All pollers now use this
function.
This commit heavily changes the polling system in order to definitely
fix the frequent breakage of SSL which needs to remember the last
EAGAIN before deciding whether to poll or not. Now we have a state per
direction for each FD, as opposed to a previous and current state
previously. An FD can have up to 8 different states for each direction,
each of which being the result of a 3-bit combination. These 3 bits
indicate a wish to access the FD, the readiness of the FD and the
subscription of the FD to the polling system.
This means that it will now be possible to remember the state of a
file descriptor across disable/enable sequences that generally happen
during forwarding, where enabling reading on a previously disabled FD
would result in forgetting the EAGAIN flag it met last time.
Several new state manipulation functions have been introduced or
adapted :
- fd_want_{recv,send} : enable receiving/sending on the FD regardless
of its state (sets the ACTIVE flag) ;
- fd_stop_{recv,send} : stop receiving/sending on the FD regardless
of its state (clears the ACTIVE flag) ;
- fd_cant_{recv,send} : report a failure to receive/send on the FD
corresponding to EAGAIN (clears the READY flag) ;
- fd_may_{recv,send} : report the ability to receive/send on the FD
as reported by poll() (sets the READY flag) ;
Some functions are used to report the current FD status :
- fd_{recv,send}_active
- fd_{recv,send}_ready
- fd_{recv,send}_polled
Some functions were removed :
- fd_ev_clr(), fd_ev_set(), fd_ev_rem(), fd_ev_wai()
The POLLHUP/POLLERR flags are now reported as ready so that the I/O layers
knows it can try to access the file descriptor to get this information.
In order to simplify the conditions to add/remove cache entries, a new
function fd_alloc_or_release_cache_entry() was created to be used from
pollers while scanning for updates.
The following pollers have been updated :
ev_select() : done, built, tested on Linux 3.10
ev_poll() : done, built, tested on Linux 3.10
ev_epoll() : done, built, tested on Linux 3.10 & 3.13
ev_kqueue() : done, built, tested on OpenBSD 5.2
We're completely changing the way FDs will be polled. There will be no
more speculative I/O since we'll know the exact FD state, so these will
only be cached events.
First, let's fix a few field names which become confusing. "spec_e" was
used to store a speculative I/O event state. Now we'll store the whole
R/W states for the FD there. "spec_p" was used to store a speculative
I/O cache position. Now let's clearly call it "cache".
We're completely changing the way FDs will be polled. First, let's fix
a few field names which become confusing. "spec_e" was used to store a
speculative I/O event state. Now we'll store the whole R/W states for
the FD there.
When a polled I/O event is detected, the event is added to the updates
list and the I/O handler is called. Upon return, if the event handler
did not experience an EAGAIN, the event remains in the updates list so
that it will be processed later. But if the event was already in the
spec list, its state is updated and it will be called again immediately
upon exit, by fd_process_spec_events(), so this creates unfairness
between speculative events and polled events.
So don't call the I/O handler upon I/O detection when the FD already is
in the spec list. The fd events are still updated so that the spec list
is up to date with the possible I/O change.
Errors and Hangups are sticky events, which means that once they're
detected, we never clear them, allowing them to be handled later if
needed.
Till now when an error was reported, it used to register a speculative
I/O event for both recv and send. Since the connection had not requested
such events, it was not able to detect a change and did not clear them,
so the events were called in loops until a timeout caused their owner
task to die.
So this patch does two things :
- stop registering spec events when no I/O activity was requested,
so that we don't end up with non-disablable polling state ;
- keep the sticky polling flags (ERR and HUP) when leaving the
connection handler so that an error notification doesn't
magically become a normal recv() or send() report once the
event is converted to a spec event.
It is normally not needed to make the connection handler emit an
error when it detects POLL_ERR because either a registered data
handler will have done it, or the event will be disabled by the
wake() callback.
The poller was updated to support speculative events. We'll need this
to fully support SSL.
As an a side effect, the code has become much simpler and much more
efficient, by taking advantage of the nice kqueue API which supports
batched updates. All references to fd_sets have disappeared, and only
the fdtab[].spec_e fields are used to decide about file descriptor
state.
The old EV_FD_SET() macro was confusing, as it would enable receipt but there
was no way to indicate that EAGAIN was received, hence the recently added
FD_WAIT_* flags. They're not enough as we're still facing a conflict between
EV_FD_* and FD_WAIT_*. So let's offer I/O functions what they need to explicitly
request polling.
These primitives were initially introduced so that callers were able to
conditionally set/disable polling on a file descriptor and check in return
what the state was. It's been long since we last had an "if" on this, and
all pollers' functions were the same for cond_* and their systematic
counter parts, except that this required a check and a specific return
value that are not always necessary.
So let's simplify the FD API by removing this now unused distinction and
by making all specific functions return void.
In an attempt to get rid of fdtab[].state, and to move the relevant
parts to the connection struct, we remove the FD_STCLOSE state which
can easily be deduced from the <owner> pointer as there is a 1:1 match.
fdtab[].ev was only set in ev_sepoll. Unfortunately, some I/O handling
functions now rely on this, so depending on the polling mechanism, some
useless operations might have been performed, such as performing a useless
recv() when a HUP was reported.
This is a very old issue, the flags were only added to the fdtab and not
propagated into any poller. Then they were used in ev_sepoll which needed
them for the cache. It is unsure whether a backport to 1.4 is appropriate
or not.
We now measure the work and idle times in order to report the idle
time in the stats. It's expected that we'll be able to use it at
other places later.
epoll, sepoll and kqueue pollers should check that their fd is not
closed before attempting to close it, otherwise we can end up with
multiple closes of fd #0 upon exit, which is harmless but dirty.
If an asynchronous signal is received outside of the poller, we don't
want the poller to wait for a timeout to occur before processing it,
so we set its timeout to zero, just like we do with pending tasks in
the run queue.
It should be stated as a rule that a C file should never
include types/xxx.h when proto/xxx.h exists, as it gives
less exposure to declaration conflicts (one of which was
caught and fixed here) and it complicates the file headers
for nothing.
Only types/global.h, types/capture.h and types/polling.h
have been found to be valid includes from C files.
This is the first attempt at moving all internal parts from
using struct timeval to integer ticks. Those provides simpler
and faster code due to simplified operations, and this change
also saved about 64 bytes per session.
A new header file has been added : include/common/ticks.h.
It is possible that some functions should finally not be inlined
because they're used quite a lot (eg: tick_first, tick_add_ifset
and tick_is_expired). More measurements are required in order to
decide whether this is interesting or not.
Some function and variable names are still subject to change for
a better overall logics.
The first implementation of the monotonic clock did not verify
forward jumps. The consequence is that a fast changing time may
expire a lot of tasks. While it does seem minor, in fact it is
problematic because most machines which boot with a wrong date
are in the past and suddenly see their time jump by several
years in the future.
The solution is to check if we spent more apparent time in
a poller than allowed (with a margin applied). The margin
is currently set to 1000 ms. It should be large enough for
any poll() to complete.
Tests with randomly jumping clock show that the result is quite
accurate (error less than 1 second at every change of more than
one second).
If the system date is set backwards while haproxy is running,
some scheduled events are delayed by the amount of time the
clock went backwards. This is particularly problematic on
systems where the date is set at boot, because it seldom
happens that health-checks do not get sent for a few hours.
Before switching to use clock_gettime() on systems which
provide it, we can at least ensure that the clock is not
going backwards and maintain two clocks : the "date" which
represents what the user wants to see (mostly for logs),
and an internal date stored in "now", used for scheduled
events.
Under some circumstances, a task may already lie in the run queue
(eg: inter-task wakeup). It is disastrous to wait for an event in
this case because some processing gets delayed.
By default, epoll/kqueue used to return as many events as possible.
This could sometimes cause huge latencies (latencies of up to 400 ms
have been observed with many thousands of fds at once). Limiting the
number of events returned also reduces the latency by avoiding too
many blind processing. The value is set to 200 by default and can be
changed in the global section using the tune.maxpollevents parameter.
Gcc provides __attribute__((constructor)) which is very convenient
to execute functions at startup right before main(). All the pollers
have been converted to have their register() function declared like
this, so that it is not necessary anymore to call them from a centralized
file.
Some pollers such as kqueue lose their FD across fork(), meaning that
the registered file descriptors are lost too. Now when the proxies are
started by start_proxies(), the file descriptors are not registered yet,
leaving enough time for the fork() to take place and to get a new pollfd.
It will be the first call to maintain_proxies that will register them.