Instead of always having to force IPv4 or IPv6, let's now also offer
"auto" which will only enable IPv6 if the system has a default gateway
for it. This means that properly configured dual-stack systems will
default to "ipv4,ipv6" while those lacking a gateway will only use
"ipv4". Note that no real connectivity test is performed, so firewalled
systems may still get it wrong and might prefer to rely on a manual
"ipv4" assignment.
In order to ease troubleshooting and testing, the new "-4" command line
argument enforces queries and processing of "A" DNS records only, i.e.
those representing IPv4 addresses. This can be useful when a host lack
end-to-end dual-stack connectivity. This overrides the global
"dns-accept-family" directive and is equivalent to value "ipv4".
By default, DNS resolvers accept both IPv4 and IPv6 addresses. This can be
influenced by the "resolve-prefer" keywords on server lines as well as the
family argument to the "do-resolve" action, but that is only a preference,
which does not block the other family from being used when it's alone. In
some environments where dual-stack is not usable, stumbling on an unreachable
IPv6-only DNS record can cause significant trouble as it will replace a
previous IPv4 one which would possibly have continued to work till next
request. The "dns-accept-family" global option permits to enforce usage of
only one (or both) address families. The argument is a comma-delimited list
of the following words:
- "ipv4": query and accept IPv4 addresses ("A" records)
- "ipv6": query and accept IPv6 addresses ("AAAA" records)
When a single family is used, no request will be sent to resolvers for the
other family, and any response for the othe family will be ignored. The
default value is "ipv4,ipv6", which effectively enables both families.
RSLV_UPD_CNAME and RSLV_UPD_NAME_ERROR flags have now become useless since
3cf7f987 ("MINOR: dns: proper domain name validation when receiving DNS
response") as they are never set, but we forgot to remove them.
RSLV_UPD_OBSOLETE_IP was introduced with commit a8c6db8d2 ("MINOR: dns:
Cache previous DNS answers.") but the commit didn't make any use of it,
and today the flag is still unused. Since we have no valid use for it,
better remove it to prevent confusions.
When we want to avoid keeping pointers on a nameserver struct, it's not
always convenient to refer as a nameserver using it's text-based unique
identifier since it's not limited in length thus it cannot be serialized
and deserialized safely.
To address this limitation, we add a new ->puid member in dns_nameserver
struct which is a parent-unique numeric value that can be used to refer
to the dns nameserver within its parent resolver context.
To achieve this, we reused the resolver->nb_nameserver member that wasn't
used. Each time we add a new nameserver to a resolver: we set ns->puid to
the current number of nameservers within the resolver and we increment
this number right away.
Public helper function find_nameserver_by_resolvers_and_id() was added to
help retrieve nameserver pointer from (resolver X nameserver puid)
combination.
Shut the connect() warning of resolvers_finalize_config() when the
configuration was not emitted manually.
This shuts the warning for the "default" resolvers which is created
automatically for the httpclient.
Must be backported in 2.6.
When the response is parsed, query items are stored in a list, attached to
the parsed response (resolve_response).
First, there is one and only one query sent at a time. Thus, there is no
reason to use a list. There is a test to be sure there is only one query
item in the response. Then, the reference on this query item is only used to
validate the domain name is the one requested. So the query list can be
removed. We only expect one query item, no reason to loop on query records.
In addition, the query domain name is now immediately checked against the
resolution domain name. This way, the query item is only manipulated during
the response parsing.
perf top shows that we spend a lot of time trying to read item->type in
the lookup loop, because the node is placed after the very long name,
so when the node is found, no data is in the cache yet. Let's simply
move the node upper in the struct. This results in the CPU usage of
resolv_validate_dns_response() to drop by 4 points.
With SRV records, a huge amount of time is spent looking for records
by walking long lists. It is possible to reduce this by indexing values
in trees instead. However the whole code relies a lot on the list
ordering, and even implements some round-robin on it to distribute IP
addresses to servers.
This patch starts carefully by replacing the list with a an eb32 tree
that is still used like a list, with a constant key 0. Since ebtrees
preserve insertion order for duplicates, the tree walk visits the nodes
in the exact same order it did with the lists. This allows to implement
the required infrastructure without changing the behavior.
These two fields are exclusive as they depend on the data type.
Let's move them into a union to save some precious bytes. This
reduces the struct resolv_answer_item size from 600 to 576 bytes.
The struct resolv_answer_item contains an address field of type
"sockaddr" which is only 16 bytes long, but which is used to store
either IPv4 or IPv6. Fortunately, the contents only overlap with
the "target" field that follows it and that is large enough to
absorb the extra bytes needed to store AAAA records. But this is
dangerous as just moving fields around could result in memory
corruption.
The fix uses a union and removes the casts that were used to hide
the problem.
Older versions need to be checked and possibly fixed. This needs
to be backported anyway.
No need to include the full tree management code, type files only
need the definitions. Doing so reduces the whole code size by around
3.6% and the build time is down to just 6s.
This patch add a ref into servers to register them onto the
record answer item used to set their hostnames.
It also adds a head list into 'srvrq' to register servers free
to be affected to a SRV record.
A head of a tree is also added to srvrq to put servers which
present a hotname in server state file. To re-link them fastly
to the matching record as soon an item present the same name.
This results in better performances on SRV record response
parsing.
This is an optimization but it could avoid to trigger the haproxy's
internal wathdog in some circumstances. And for this reason
it should be backported as far we can (2.0 ?)
This patch adds a head list into answer items on servers which use
this record to set their IPs. It makes lookup on duplicated ip faster and
allow to check immediatly if an item is still valid renewing the IP.
This results in better performances on A/AAAA resolutions.
This is an optimization but it could avoid to trigger the haproxy's
internal wathdog in some circumstances. And for this reason
it should be backported as far we can (2.0 ?)
The last time when an item was seen in a resolver responses is now stored in
milliseconds instead of seconds. This avoid some corner-cases at the
edges. This also simplifies time comparisons.
Parameter "accepted_payload_size" is currently considered regardless
the used nameserver is using TCP or UDP. It remains mandatory to annouce
such capability to support e-dns, so a value have to be announced also
in TCP. Maximum DNS message size in TCP is limited by protocol to 65535
and so for UDP (65507) if system supports such UDP messages. But
the maximum value for this option was arbitrary forced to 8192.
This patch change this maximum to 65535 to allow user to set bigger value
for UDP if its system supports. It also sets accepted_payload_size
in TCP allowing to retrieve huge responses if the configuration uses
TCP nameservers.
The request announcing the accepted_payload_size capability is currently
built at resolvers level and is common to all used nameservers of the
section regardess transport protocol used. A further patch should be
made to at least specify a different payload size depending of the
transport, and perhaps could be forced to 65535 in case of TCP and
maximum would be forced back to 65507 matching UDP max.
This patch is appliable since 2.4 version
This patch splits current dns.c into two files:
The first dns.c contains code related to DNS message exchange over UDP
and in future other TCP. We try to remove depencies to resolving
to make it usable by other stuff as DNS load balancing.
The new resolvers.c inherit of the code specific to the actual
resolvers.
Note:
It was really difficult to obtain a clean diff dur to the amount
of moved code.
Note2:
Counters and stuff related to stats is not cleany separated because
currently counters for both layers are merged and hard to separate
for now.