Now we introduce srv->admin and srv->prev_admin which are bitfields
containing one bit per source of administrative status (maintenance only
for now). For the sake of backwards compatibility we implement a single
source (ADMF_FMAINT) but the code already checks any source (ADMF_MAINT)
where the STF_MAINTAIN bit was previously checked. This will later allow
us to add ADMF_IMAINT for maintenance mode inherited from tracked servers.
Along doing these changes, it appeared that some places will need to be
revisited when implementing the inherited bit, this concerns all those
modifying the ADMF_FMAINT bit (enable/disable actions on the CLI or stats
page), and the checks to report "via" on the stats page. But currently
the code is harmless.
Till now, the server's state and flags were all saved as a single bit
field. It causes some difficulties because we'd like to have an enum
for the state and separate flags.
This commit starts by splitting them in two distinct fields. The first
one is srv->state (with its counter-part srv->prev_state) which are now
enums, but which still contain bits (SRV_STF_*).
The flags now lie in their own field (srv->flags).
The function srv_is_usable() was updated to use the enum as input, since
it already used to deal only with the state.
Note that currently, the maintenance mode is still in the state for
simplicity, but it must move as well.
When run in daemon mode (i.e. with at least one forked process) and using
the epoll poller, sending USR1 (graceful shutdown) to the worker processes
can cause some workers to start running at 100% CPU. Precondition is having
an established HTTP keep-alive connection when the signal is received.
The cloned (during fork) listening sockets do not get closed in the parent
process, thus they do not get removed from the epoll set automatically
(see man 7 epoll). This can lead to the process receiving epoll events
that it doesn't feel responsible for, resulting in an endless loop around
epoll_wait() delivering these events.
The solution is to explicitly remove these file descriptors from the epoll
set. To not degrade performance, care was taken to only do this when
neccessary, i.e. when the file descriptor was cloned during fork.
Signed-off-by: Conrad Hoffmann <conrad@soundcloud.com>
[wt: a backport to 1.4 could be studied though chances to catch the bug are low]
This flag is only a copy of (srv->uweight == 0), so better get rid of
it to reduce some of the confusion that remains in the code, and use
a simple function to return this state based on this weight instead.
Long-lived sessions are often subject to half-closed sessions resulting in
a lot of sessions appearing in FIN_WAIT state in the system tables, and no
way for haproxy to get rid of them. This typically happens because clients
suddenly disconnect without sending any packet (eg: FIN or RST was lost in
the path), and while the server detects this using an applicative heart
beat, haproxy does not close the connection.
This patch adds two new timeouts : "timeout client-fin" and
"timeout server-fin". The former allows one to override the client-facing
timeout when a FIN has been received or sent. The latter does the same for
server-facing connections, which is less useful.
Some consistency checks cannot be performed between frontends, backends
and peers at the moment because there is no way to check for intersection
between processes bound to some processes when the number of processes is
higher than the number of bits in a word.
So first, let's limit the number of processes to the machine's word size.
This means nbproc will be limited to 32 on 32-bit machines and 64 on 64-bit
machines. This is far more than enough considering that configs rarely go
above 16 processes due to scalability and management issues, so 32 or 64
should be fine.
This way we'll ensure we can always build a mask of all the processes a
section is bound to.
This commit modifies the PROXY protocol V2 specification to support headers
longer than 255 bytes allowing for optional extensions. It implements the
PROXY protocol V2 which is a binary representation of V1. This will make
parsing more efficient for clients who will know in advance exactly how
many bytes to read. Also, it defines and implements some optional PROXY
protocol V2 extensions to send information about downstream SSL/TLS
connections. Support for PROXY protocol V1 remains unchanged.
On the mailing list, seri0528@naver.com reported an issue when
using balance url_param or balance uri. The request would sometimes
stall forever.
Cyril Bonté managed to reproduce it with the configuration below :
listen test :80
mode http
balance url_param q
hash-type consistent
server s demo.1wt.eu:80
and found it appeared with this commit : 80a92c0 ("BUG/MEDIUM: http:
don't start to forward request data before the connect").
The bug is subtle but real. The problem is that the HTTP request
forwarding analyzer refrains from starting to parse the request
body when some LB algorithms might need the body contents, in order
to preserve the data pointer and avoid moving things around during
analysis in case a redispatch is later needed. And in order to detect
that the connection establishes, it watches the response channel's
CF_READ_ATTACHED flag.
The problem is that a request analyzer is not subscribed to a response
channel, so it will only see changes when woken for other (generally
correlated) reasons, such as the fact that part of the request could
be sent. And since the CF_READ_ATTACHED flag is cleared once leaving
process_session(), it is important not to miss it. It simply happens
that sometimes the server starts to respond in a sequence that validates
the connection in the middle of process_session(), that it is detected
after the analysers, and that the newly assigned CF_READ_ATTACHED is
not used to detect that the request analysers need to be called again,
then the flag is lost.
The CF_WAKE_WRITE flag doesn't work either because it's cleared upon
entry into process_session(), ie if we spend more than one call not
connecting.
Thus we need a new flag to tell the connection initiator that we are
specifically interested in being notified about connection establishment.
This new flag is CF_WAKE_CONNECT. It is set by the requester, and is
cleared once the connection succeeds, where CF_WAKE_ONCE is set instead,
causing the request analysers to be scanned again.
For future versions, some better options will have to be considered :
- let all analysers subscribe to both request and response events ;
- let analysers subscribe to stream interface events (reduces number
of useless calls)
- change CF_WAKE_WRITE's semantics to persist across calls to
process_session(), but that is different from validating a
connection establishment (eg: no data sent, or no data to send)
The bug was introduced in 1.5-dev23, no backport is needed.
Till now we used to return a pointer to a rule, but that makes it
complicated to later add support for registering new actions which
may fail. For example, the redirect may fail if the response is too
large to fit into the buffer.
So instead let's return a verdict. But we needed the pointer to the
last rule to get the address of a redirect and to get the realm used
by the auth page. So these pieces of code have moved into the function
and they produce a verdict.
Last fix did address the issue for inlined patterns, but it was not
enough because the flags are lost as well when updating patterns
dynamically over the CLI.
Also if the same file was used once with -i and another time without
-i, their references would have been merged and both would have used
the same matching method.
It's appear that the patterns have two types of flags. The first
ones are relative to the pattern matching, and the second are
relative to the pattern storage. The pattern matching flags are
the same for all the patterns of one expression. Now they are
stored in the expression. The storage flags are information
returned by the pattern mathing function. This information is
relative to each entry and is stored in the "struct pattern".
Now, the expression matching flags are forwarded to the parse
and index functions. These flags are stored during the
configuration parsing, and they are used during the parse and
index actions.
This issue was introduced in dev23 with the major pattern rework,
and is a continuation of commit a631fc8 ("BUG/MAJOR: patterns: -i
and -n are ignored for inlined patterns"). No backport is needed.
Using the previous callback, it's trivial to block the heartbeat attack,
first we control the message length, then we emit an SSL error if it is
out of bounds. A special log is emitted, indicating that a heartbleed
attack was stopped so that they are not confused with other failures.
That way, haproxy can protect itself even when running on an unpatched
SSL stack. Tests performed with openssl-1.0.1c indicate a total success.
Users have seen a huge increase in the rate of SSL handshake failures
starting from 2014/04/08 with the release of the Heartbleed OpenSSL
vulnerability (CVE-2014-0160). Haproxy can detect that a heartbeat
was received in the incoming handshake, and such heartbeats are not
supposed to be common, so let's log a different message when a
handshake error happens after a heartbeat is detected.
This patch only adds the new message and the new code.
The http_(res|req)_keywords_register() functions allow to register
new keywords.
You need to declare a keyword list:
struct http_req_action_kw_list test_kws = {
.scope = "testscope",
.kw = {
{ "test", parse_test },
{ NULL, NULL },
}
};
and a parsing function:
int parse_test(const char **args, int *cur_arg, struct proxy *px, struct http_req_rule *rule, char **err)
{
rule->action = HTTP_REQ_ACT_CUSTOM_STOP;
rule->action_ptr = action_function;
return 0;
}
http_req_keywords_register(&test_kws);
The HTTP_REQ_ACT_CUSTOM_STOP action stops evaluation of rules after
your rule, HTTP_REQ_ACT_CUSTOM_CONT permits the evaluation of rules
after your rule.
This patch allows manipulation of ACL and MAP content thanks to any
information available in a session: source IP address, HTTP request or
response header, etc...
It's an update "on the fly" of the content of the map/acls. This means
it does not resist to reload or restart of HAProxy.
Finn Arne Gangstad suggested that we should have the ability to break
keep-alive when the target server has reached its maxconn and that a
number of connections are present in the queue. After some discussion
around his proposed patch, the following solution was suggested : have
a per-proxy setting to fix a limit to the number of queued connections
on a server after which we break keep-alive. This ensures that even in
high latency networks where keep-alive is beneficial, we try to find a
different server.
This patch is partially based on his original proposal and implements
this configurable threshold.
There are still some pending issues in the gzip compressor, and fixing
them requires a better handling of intermediate parsing states.
Another issue to deal with is the rewinding of a buffer during a redispatch
when a load balancing algorithm involves L7 data because the exact amount of
data to rewind is not clear. At the moment, this is handled by unwinding all
pending data, which cannot work in responses due to pipelining.
Last, having a first analysis which parses the body and another one which
restarts from where the parsing was left is wrong. Right now it only works
because we never both parse and transform in the same direction. But that
is wrong anyway.
In order to address the first issue, we'll have to use msg->eoh + msg->eol
to find the end of headers, and we still need to store the information about
the forwarded header length somewhere (msg->sol might be reused for this).
msg->sov may only be used for the start of data and not for subsequent chunks
if possible. This first implies that we stop sharing it with header length,
and stop using msg->sol there. In fact we don't need it already as it is
always zero when reaching the HTTP_MSG_BODY state. It was only updated to
reflect a copy of msg->sov.
So now as a first step into that direction, this patch ensure that msg->sol
is never re-assigned after being set to zero and is not used anymore when
we're dealing with HTTP processing and forwarding. We'll later reuse it
differently but for now it's secured.
The patch does nothing magic, it only removes msg->sol everywhere it was
already zero and avoids setting it. In order to keep the sov-sol difference,
it now resets sov after forwarding data. In theory there's no problem here,
but the patch is still tagged major because that code is complex.
One of the issues we face when we need to either forward headers only
before compressing, or rewind the stream during a redispatch is to know
the proper length of the request headers. msg->eoh always has the total
length up to the last CRLF, and we never know whether the request ended
with a single LF or a standard CRLF. This makes it hard to rewind the
headers without explicitly checking the bytes in the buffer.
Instead of doing so, we now use msg->eol to carry the length of the last
CRLF (either 1 or 2). Since it is not modified at all after HTTP_MSG_BODY,
and was only left in an undefined state, it is safe to use at any moment.
Thus, the complete header length to forward or to rewind now is always
msg->eoh + msg->eol.
This is the continuation of previous patch. Now that full buffers are
not rejected anymore, let's wait for at least the advertised chunk or
body length to be present or the buffer to be full. When either
condition is met, the message processing can go forward.
Thus we don't need to use url_param_post_limit anymore, which was passed
in the configuration as an optionnal <max_wait> parameter after the
"check_post" value. This setting was necessary when the feature was
implemented because there was no support for parsing message bodies.
The argument is now silently ignored if set in the configuration.
When compiled with USE_GETADDRINFO, make sure we use getaddrinfo(3) to
perform name lookups. On default dual-stack setups this will change the
behavior of using IPv6 first. Global configuration option
'nogetaddrinfo' can be used to revert to deprecated gethostbyname(3).
Commit 6f7203d ("MEDIUM: pattern: add prune function") introduced an
array of functions pat_prune_fcts[] but unfortunately declared it in
pattern.h without marking it "extern", resulting in each file including
it having its own copy.
We have a use case where we look up a customer ID in an HTTP header
and direct it to the corresponding server. This can easily be done
using ACLs and use_backend rules, but the configuration becomes
painful to maintain when the number of customers grows to a few
tens or even a several hundreds.
We realized it would be nice if we could make the use_backend
resolve its name at run time instead of config parsing time, and
use a similar expression as http-request add-header to decide on
the proper backend to use. This permits the use of prefixes or
even complex names in backend expressions. If no name matches,
then the default backend is used. Doing so allowed us to get rid
of all the use_backend rules.
Since there are some config checks on the use_backend rules to see
if the referenced backend exists, we want to keep them to detect
config errors in normal config. So this patch does not modify the
default behaviour and proceeds this way :
- if the backend name in the use_backend directive parses as a log
format rule, it's used as-is and is resolved at run time ;
- otherwise it's a static name which must be valid at config time.
There was the possibility of doing this with the use-server directive
instead of use_backend, but it seems like use_backend is more suited
to this task, as it can be used for other purposes. For example, it
becomes easy to serve a customer-specific proxy.pac file based on the
customer ID by abusing the errorfile primitive :
use_backend bk_cust_%[hdr(X-Cust-Id)] if { hdr(X-Cust-Id) -m found }
default_backend bk_err_404
backend bk_cust_1
errorfile 200 /etc/haproxy/static/proxy.pac.cust1
Signed-off-by: Bertrand Jacquin <bjacquin@exosec.fr>
This patch replace a lot of pointeur by pattern matching identifier. If
the declared ACL use all the predefined pattern matching functions, the
register function gets the functions provided by "pattern.c" and
identified by the PAT_LATCH_*.
In the case of the acl uses his own functions, they can be declared, and
the acl registration doesn't change it.
This flag is no longer used. The last place using this, are the display
of the result of pattern matching in the cli command "get map" or "get
acl".
The first parameter of this command is the reference of the file used to
perform the lookup.
This patch adds new display type. This display returns allocated string,
when the string is flush into buffers, it is freed. This permit to
return the content of "memprintf(err, ...)" messages.
The pat_ref_add functions has changed to return error.
The format of the acl file are not the same than the format of the map
files. In some case, the same file can be used, but this is ambiguous
for the user because the patterns are not the expected.
The find_smp search the smp using the value of the pat_ref_elt pointer.
The pat_find_smp_* are no longer used. The function pattern_find_smp()
known all pattern indexation, and can be found
All the pattern delete function can use her reference to the original
"struct pat_ref_elt" to find the element to be remove. The functions
pat_del_list_str() and pat_del_meth() were deleted because after
applying this modification, they have the same code than pat_del_list_ptr().
Now, each pattern entry known the original "struct pat_ref_elt" from
that was built. This patch permit to delete each pattern entry without
confusion. After this patch, each reference can use his pointer to be
targeted.
The pattern reference are stored with two identifiers: the unique_id and
the reference.
The reference identify a file. Each file with the same name point to the
same reference. We can register many times one file. If the file is
modified, all his dependencies are also modified. The reference can be
used with map or acl.
The unique_id identify inline acl. The unique id is unique for each acl.
You cannot force the same id in the configuration file, because this
repport an error.
The format of the acl and map listing through the "socket" has changed
for displaying these new ids.
This patch extract the expect_type variable from the "struct pattern" to
"struct pattern_head". This variable is set during the declaration of
ACL and MAP. With this change, the function "pat_parse_len()" become
useless and can be replaced by "pat_parse_int()".
Implicit ACLs by default rely on the fetch's output type, so let's simply do
the same for all other ones. It has been verified that they all match.
Sometimes the same pattern file is used with the same index, parse and
parse_smp functions. If this two condition are true, these two pattern
are identical and the same struct can be used.
This patch add the following socket command line options:
show acl [<id>]
clear acl <id>
get acl <id> <pattern>
del acl <id> <pattern>
add acl <id> <pattern>
The system used for maps is backported in the pattern functions.
Some functions needs to change the sample associated to pattern. This
new pointer permit to return the a pointer to the sample pointer. The
caller can use or change the value.