As long-time changes have accumulated over time, the exported functions
of the stream-interface were almost all prefixed "si_<something>" while
most private ones (mostly callbacks) were called "stream_int_<something>".
There were still a few confusing exceptions, which were addressed to
follow this shcme :
- stream_sock_read0(), only used internally, was renamed stream_int_read0()
and made static
- stream_int_notify() is only private and was made static
- stream_int_{check_timeouts,report_error,retnclose,register_handler,update}
were renamed si_<something>.
Now it is clearer when checking one of these if it risks to be used outside
or not.
We most often store the mux context there but it can also be something
else while setting up the connection. Better call it "ctx" and know
that it's the owner's context than misleadingly call it mux_ctx and
get caught doing suspicious tricks.
It takes ages to proceed with "show fd" when there is sustained activity
because it uses the rendez-vous point for each and every file descriptor
in the loop. It's very common to see socat timeout there.
Instead of doing this, let's just isolate the function when entering the
loop. Its duration is limited by the number of FDs that may be emitted in
a single buffer anyway, so it's much lighter and responds much faster.
If a reload was issued to the master process and failed, it is critical
that the admin sees it because it means that the saved configuration
does not work anymore and might not be usable after a full restart. For
this reason in this case we modify the "master" prompt to explicitly
indicate that a reload failed.
In the master CLI, the commands and the prefix were still parsed and
trimmed after the pattern payload. Don't parse anything but the end of a
line till we are in payload mode.
Put the search of the pattern after the trim so we can use correctly a
payload with a command which is prefixed by @.
Handle the CLI level in the master CLI. In order to do this, the master
CLI stores the level in the stream. Each command are prefixed by a
"user" or "operator" command before they are forwarded to the target
CLI.
The level can be configured in the haproxy program arguments with the
level keyword: -S /tmp/sock,level,admin -S /tmp/sock2,level,user.
Implement "show cli level" which show the level of the current CLI
session.
Implement "operator" and "user" which lower the permissions of the
current CLI session.
Change the output of the relative pid for the old processes, displays
"[was: X]" instead of just "X" which was confusing if you want to
connect to the CLI of an old PID.
The CLI proxy was not handling payload. To do that, we needed to keep a
connection active on a server and to transfer each new line over that
connection until we receive a empty line.
The CLI proxy handles the payload in the same way that the CLI do it.
Examples:
$ echo -e "@1;add map #-1 <<\n$(cat data)\n" | socat /tmp/master-socket -
$ socat /tmp/master-socket readline
prompt
master> @1
25130> add map #-1 <<
+ test test
+ test2 test2
+ test3 test3
+
25130>
During a payload transfer, we need to wait for the data even when we are
not in interactive mode. Indeed, the data could be received line per
line progressively instead of in one recv.
Previously the CLI was doing a SHUTW just after the first line if it was
not in interactive mode. We now check if we are in payload mode to do
a SHUTW.
Should be backported in 1.8.
Rework the CLI proxy parser to look more like the CLI parser, corner
case and escaping are handled the same way.
The parser now splits the commands in words instead of just handling
the prefixes.
It's easier to compare words and arguments of a command this way and to
parse internal command that will be consumed directly by the CLI proxy.
These potential null-deref warnings are emitted on gcc 7 and above
when threads are disabled due to the use of objt_server() after an
existing validity test. Let's switch to __objt_server() since we
know the pointer is valid, it will not confuse the compiler.
Some of these may be backported to 1.8.
This switches explicit calls to various trivial registration methods for
keywords, muxes or protocols from constructors to INITCALL1 at stage
STG_REGISTER. All these calls have in common to consume a single pointer
and return void. Doing this removes 26 constructors. The following calls
were addressed :
- acl_register_keywords
- bind_register_keywords
- cfg_register_keywords
- cli_register_kw
- flt_register_keywords
- http_req_keywords_register
- http_res_keywords_register
- protocol_register
- register_mux_proto
- sample_register_convs
- sample_register_fetches
- srv_register_keywords
- tcp_req_conn_keywords_register
- tcp_req_cont_keywords_register
- tcp_req_sess_keywords_register
- tcp_res_cont_keywords_register
- flt_register_keywords
Fix some memory leak and a FD leak in the error path of the master proxy
initialisation. It's a really minor issue since the process is exiting
when taking those error paths.
Valgrind's memcheck reports memory leaks in cli.c, because
the out parameter of memprintf is not properly freed:
==31035== 11 bytes in 1 blocks are definitely lost in loss record 16 of 101
==31035== at 0x4C2DB8F: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==31035== by 0x4C2FDEF: realloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==31035== by 0x4A3C72: my_realloc2 (standard.h:1364)
==31035== by 0x4A3C72: memvprintf (standard.c:3459)
==31035== by 0x4A3D93: memprintf (standard.c:3482)
==31035== by 0x4AF77E: mworker_cli_sockpair_new (cli.c:2324)
==31035== by 0x48E826: init (haproxy.c:1749)
==31035== by 0x408BBC: main (haproxy.c:2725)
==31035==
==31035== 11 bytes in 1 blocks are definitely lost in loss record 17 of 101
==31035== at 0x4C2DB8F: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==31035== by 0x4C2FDEF: realloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==31035== by 0x4A3C72: my_realloc2 (standard.h:1364)
==31035== by 0x4A3C72: memvprintf (standard.c:3459)
==31035== by 0x4A3D93: memprintf (standard.c:3482)
==31035== by 0x4AF071: mworker_cli_proxy_create (cli.c:2172)
==31035== by 0x48EC89: init (haproxy.c:1760)
==31035== by 0x408BBC: main (haproxy.c:2725)
These leaks were introduced in commits
ce83b4a5dd and
8a02257d88
which are specific to haproxy 1.9 dev.
The "cpust_{tot,1s,15s}" fields used to report milliseconds but nothing
in the value's title made this explicit. Let's rename the field to report
"cpust_ms_{tot,1s,15s}" to more easily remind that the unit represents
milliseconds.
Since we know the time it takes to process everything between two poll()
calls, we can use this as the max latency measurement any task will
experience and average it.
This code does this, and reports in "show activity" the average of this
loop time over the last 1024 poll() loops, for each thread. It will vary
quickly at high loads and slowly under low to moderate loads, depending
on the rate at which poll() is called. The latency a task experiences
is expected to be half of this on average.
At the moment the situation with activity measurement is quite tricky
because the struct activity is defined in global.h and declared in
haproxy.c, with operations made in time.h and relying on freq_ctr
which are defined in freq_ctr.h which itself includes time.h. It's
barely possible to touch any of these files without breaking all the
circular dependency.
Let's move all this stuff to activity.{c,h} and be done with it. The
measurement of active and stolen time is now done in a dedicated
function called just after tv_before_poll() instead of mixing the two,
which used to be a lazy (but convenient) decision.
No code was changed, stuff was just moved around.
In the output of 'show fd', the worker CLI's socketpair was still
handled by an "unknown" function. That can be really confusing during
debug. Fixed it by showing "mworker_accept_wrapper" instead.
Remaining calls to si_cant_put() were all for lack of room and were
turned to si_rx_room_blk(). A few places where SI_FL_RXBLK_ROOM was
cleared by hand were converted to si_rx_room_rdy().
The now unused si_cant_put() function was removed.
A number of calls to si_cant_put() were used in fact to request being
called back once a buffer is available. These ones are not needed anymore
since si_alloc_ibuf() already sets the SI_FL_RXBLK_BUFF flag when called
in appctx context. Those called with a foreign stream-int are simply turned
to si_rx_buff_blk().
In master-worker mode, the socketpair CLI listener of the worker is now
marked unstoppable, which allows to connect to the CLI of an old process
which is in a leaving state, allowing to debug it.
It doesn't make sense to limit this code to applets, as any stream
interface can use it. Let's rename it by simply dropping the "applet_"
part of the name. No other change was made except updating the comments.
A bug occurs when the CLI proxy of the master received a command which
is prefixed by some spaces but without a routing prefix (@).
In this case the pcli_parse_request() was returning a wrong number of
data to forward.
The response analyzer was called twice and the prompt displayed twice.
This patch implements analysers for parsing the CLI and extra features
for the master's CLI.
For each command (sent alone, or separated by ; or \n) the request
analyser will determine to which server it should send the request.
The 'mode cli' proxy is able to parse a prefix for each command which is
used to select the apropriate server. The prefix start by @ and is
followed by "master", the PID preceded by ! or the relative PID. (e.g.
@master, @1, @!1234). The servers are not round-robined anymore.
The command is sent with a SHUTW which force the server to close the
connection after sending its response. However the proxy allows a
keepalive connection on the client side and does not close.
The response analyser does not do much stuff, it only reinits the
connection when it received a close from the server, and forward the
response. It does not analyze the response data.
The only guarantee of the end of the response is the close of the
server, we can't rely on the double \n since it's not send by every
command.
This could be reimplemented later as a filter.
Add a struct server pointer in the mworker_proc struct so we can easily
use it as a target for the mworker proxy.
pcli_prefix_to_pid() is used to find the right PID of the worker
when using a prefix in the CLI. (@master, @#<relative pid> , @<pid>)
pcli_pid_to_server() is used to find the right target server for the
CLI proxy.
The master process does not need all the keywords of the cli, add 2
flags to chose which keyword to use.
It might be useful to activate some of them in a debug mode later...
This patch introduces mworker_cli_proxy_new_listener() which allows the
creation of new listeners for the CLI proxy.
Using this function it is possible to create new listeners from the
program arguments with -Sa <unix_socket>. It is allowed to create
multiple listeners with several -Sa.
This patch implements a listen proxy within the master. It uses the
sockpair of all the workers as servers.
In the current state of the code, the proxy is only doing round robin on
the CLI of the workers. A CLI mode will be needed to know to which CLI
send the requests.