Some broken browsers still happen to send a CRLF after a POST. Those which
send a CRLF in a second packet have it queued into the system's buffers,
which causes an RST to be emitted by some systems upon close of the response
(eg: Linux). The client may then receive the RST without the last response
segments, resulting in a truncated response.
This change leaves request polling enabled on a POST so that we can flush
any late data from the request buffers.
A more complete workaround would consist in reading from the request for a
long time, until we get confirmation that the close has been ACKed. This
is much more complex and should only be studied for newer versions.
(cherry picked from commit 12e316af4f0245fde12dbc224ebe33c8fea806b2)
Jozsef R.Nagy reported a reliability issue on FreeBSD. Sometimes an error
would be emitted, reporting the inability to switch a socket to non-blocking
mode and the listener would definitely not accept anything. Cyril Bonté
narrowed this bug down to the call to EV_FD_CLR(l->fd, DIR_RD).
He was right because this call is wrong. It only disables input events on
the listening socket, without setting the listener to the LI_LISTEN state,
so any subsequent call to enable_listener() from maintain_proxies() is
ignored ! The correct fix consists in calling disable_listener() instead.
It is discutable whether we should keep such error path or just ignore the
event. The goal in earlier versions was to temporarily disable new activity
in order to let the system recover while releasing resources.
There was no consistency between all the functions used to exchange data
between a buffer and a stream interface. Also, the functions used to send
data to a buffer did not consider the possibility that the buffer was
shutdown for read.
Now the functions are called buffer_{put,get}_{char,block,chunk,string}.
The old buffer_feed* functions have been left available for existing code
but marked deprecated.
si->release() was called each time we closed one direction of a stream
interface, while it should only have been called when both sides are
closed. This bug is specific to 1.5 and only affects embedded tasks.
In deinit(), it is possible that we first free the listeners, then
unbind them all. Right now this situation can't happen because the
only way to call deinit() is to pass via a soft-stop which will
already unbind all protocols. But later this might become a problem.
This patch addresses exactly the same issues as the previous one, but
for responses this time. It also introduces implicit support for the
Set-Cookie2 header, for which there's almost nothing specific to do
since it is a clean header. This one allows multiple cookies in a
same header, by respecting the HTTP messaging semantics.
The new parser has been tested with insertion, rewrite, passive,
removal, prefixing and captures, and it looks OK. It's still able
to rewrite (or delete) multiple cookies at once. Just as with the
request parser, it tries hard to fix formating of the cookies it
displaces.
This patch too should be backported to 1.4 and possibly to 1.3.
The request cookie parser did not allow spaces to appear in cookie
values nor around the equal sign. The various RFCs on the subject
say different things, some suggesting that a space is allowed after
the equal sign and being worded in a way that lets one believe it
is allowed before too. Some spaces may appear inside values and be
part of the values. The quotes allow delimiters to be embedded in
values. The spaces before and after attributes should be trimmed.
The new parser addresses all those points and has been carefully tested.
It fixes misplaced spaces around equal signs before processing the cookies
or forwarding them. It also tries its best to perform clean removals by
always keeping the delimiter after the value being removed and leaving one
space after it.
The variable inside the parser have been renamed to make the code a lot
more understandable, and one multi-function pointer has been eliminated.
Since this patch fixes real possible issues, it should be backported to 1.4
and possibly 1.3, since one (single) case of wrong spaces has been reported
in 1.3.
The code handling the Set-Cookie has not been touched yet.
This counter is incremented for each incoming connection and each active
listener, and is used to prevent haproxy from stopping upon SIGUSR1. It
will thus be possible for some tasks in increment this counter in order
to prevent haproxy from dying until they have completed their job.
The header parser has a bug which causes commas to be matched within
quotes while it was not expected. The way the code was written could
make one think it was OK. The resulting effect is that the following
config would use the second IP address instead of the third when facing
this request :
source 0.0.0.0 usesrc hdr_ip(X-Forwarded-For,2)
GET / HTTP/1.0
X-Forwarded-for: "127.0.0.1, 127.0.0.2", 127.0.0.3
This fix must be backported to 1.4 and 1.3.
Fix 4fe41902789d188ee4c23b14a7cdbf075463b158 was a bit too strong. It
has caused some chunked-encoded responses to be truncated when a recv()
call could return multiple chunks followed by a close. The reason is
that when a chunk is parsed, only its contents are scheduled to be
forwarded. Thus, the reader sees auto_close+shutr and sets shutw_now.
The sender in turn sends the last scheduled data and does shutw().
Another nasty effect is that it has reduced the keep-alive rate. If
a response did not completely fit into the buffer, then the auto_close
bit was left on and the sender would close upon completion.
The fix consists in not making use of auto_close when chunked encoding
is used nor when keep-alive is used, which makes sense. However it is
maintained on error processing.
Thanks to Cyril Bonté for reporting the issue early.
Signal zero is never delivered by the system. However having a signal to
which functions and tasks can subscribe to be notified of a stopping event
is useful. So this patch does two things :
1) allow signal zero to be delivered from any function of signal handler
2) make soft_stop() deliver this signal so that tasks can be notified of
a stopping condition.
The two new functions below make it possible to register any number
of functions or tasks to a system signal. They will be called in the
registration order when the signal is received.
struct sig_handler *signal_register_fct(int sig, void (*fct)(struct sig_handler *), int arg);
struct sig_handler *signal_register_task(int sig, struct task *task, int reason);
In case of binding failure during startup, we wait for some time sending
signals to old pids so that they release the ports we need. But if there
aren't any old pids anymore, it's useless to wait, we prefer to fail fast.
Along with this change, we now have the number of old pids really found
in the nb_oldpids variable.
If the global stats timeout statement was found before the stats socket
(or without), the parser would crash because the stats frontend was not
initialized. Now we have an allocation function which solves the issue.
This bug was introduced with 1.4 so it does not need backporting.
(was commit 1c5819d2498ae3643c3880507847f948a53d2773 in 1.4)
If a server is disabled or tracking a disabled server, it must not
dequeue requests pending in the proxy queue, it must only dequeue
its own ones.
The problem that was caused is that if a backend always had requests
in its queue, a disabled server would continue to take traffic forever.
(was commit 09d02aaf02d1f21c0c02672888f3a36a14bdd299 in 1.4)
The statistics page (the HTML one) displays a garbage value on frontends using
"rate-limit session" in HTTP mode.
This is due to the usage of the same buffer for the macros converting the max
session rate and the limit.
Steps to reproduce :
Configuration file example :
listen bug :80
mode http
rate-limit sessions
stats enable
Then start refreshing the statistics page.
This bug was introduced just before the release of haproxy 1.4.0.
(was commit 6cfaf9e91969c87a9eab1d58a15d2d0a3f346c9b in 1.4)
While it's usually desired to wait for a server response even
when the client closes its request channel, it can be problematic
with long polling requests. In order to let the server decide what
to do in such a case, if option abortonclose is set, we simply
forward the shutdown to the server. That way, it can decide to
take the appropriate action. Most servers will still process the
request, while some will probably want to abort.
Obviously, this only works as long as the client has not sent
another pipelined request over the same connection.
(was commit 0e25d86da49827ff6aa3c94132c01292b5ba4854 in 1.4)
In case of HTTP keepalive processing, we want to release the counters tracked
by the backend. Till now only the second set of counters was released, while
it could have been assigned by the frontend, or the backend could also have
assigned the first set. Now we reuse to unused bits of the session flags to
mark which stick counters were assigned by the backend and to release them as
appropriate.
The assumption that there was a 1:1 relation between tracked counters and
the frontend/backend role was wrong. It is perfectly possible to track the
track-fe-counters from the backend and the track-be-counters from the
frontend. Thus, in order to reduce confusion, let's remove this useless
{fe,be} reference and simply use {1,2} instead. The keywords have also been
renamed in order to limit confusion. The ACL rule action now becomes
"track-sc{1,2}". The ACLs are now "sc{1,2}_*" instead of "trk{fe,be}_*".
That means that we can reasonably document "sc1" and "sc2" (sticky counters
1 and 2) as sort of patterns that are available during the whole session's
life and use them just like any other pattern.
It began to be problematic to have "tcp-request" followed by an
immediate action, as sometimes it was a keyword indicating a hook
or setting ("content" or "inspect-delay") and sometimes it was an
action.
Now the prefix for connection-level tcp-requests is "tcp-request connection"
and the ones processing contents remain "tcp-request contents".
This has allowed a nice simplification of the config parser and to
clean up the doc a bit. Also now it's a bit more clear why tcp-request
connection are not allowed in backends.
Doing so allows us to track counters from backends or depending on contents.
For instance, it now becomes possible to decide to track a connection based
on a Host header if enough time is granted to parse the HTTP request. It is
also possible to just track frontend counters in the frontend and unconditionally
track backend counters in the backend without having to write complex rules.
The first track-fe-counters rule executed is used to track counters for
the frontend, and the first track-be-counters rule executed is used to track
counters for the backend. Nothing prevents a frontend from setting a track-be
rule nor a backend from setting a track-fe rule. In fact these rules are
arbitrarily split between FE and BE with no dependencies.
Having a single tracking pointer for both frontend and backend counters
does not work. Instead let's have one for each. The keyword has changed
to "track-be-counters" and "track-fe-counters", and the ACL "trk_*"
changed to "trkfe_*" and "trkbe_*".
It is now possible to dump some select table entries based on criteria
which apply to the stored data. This is enabled by appending the following
options to the end of the "show table" statement :
data.<data_type> {eq|ne|lt|gt|le|ge} <value>
For intance :
show table http_proxy data.conn_rate gt 5
show table http_proxy data.gpc0 ne 0
The compare applies to the integer value as it would be displayed, and
operates on signed long long integers.
It's a bit cumbersome to have to know all possible storable types
from the stats interface. Instead, let's have generic types for
all data, which will facilitate their manipulation.
This feature will be required at some point, when the stick tables are
used to enforce security measures. For instance, some visitors may be
incorrectly flagged as abusers and would ask the site admins to remove
their entry from the table.
It is now possible to dump a table's contents with keys, expire,
use count, and various data using the command above on the stats
socket.
"show table" only shows main table stats, while "show table <name>"
dumps table contents, only if the socket level is admin.
This patch adds support for the following session counters :
- http_req_cnt : HTTP request count
- http_req_rate: HTTP request rate
- http_err_cnt : HTTP request error count
- http_err_rate: HTTP request error rate
The equivalent ACLs have been added to check the tracked counters
for the current session or the counters of the current source.
This counter may be used to track anything. Two sets of ACLs are available
to manage it, one gets its value, and the other one increments its value
and returns it. In the second case, the entry is created if it did not
exist.
Thus it is possible for example to mark a source as being an abuser and
to keep it marked as long as it does not wait for the entry to expire :
# The rules below use gpc0 to track abusers, and reject them if
# a source has been marked as such. The track-counters statement
# automatically refreshes the entry which will not expire until a
# 1-minute silence is respected from the source. The second rule
# evaluates the second part if the first one is true, so GPC0 will
# be increased once the conn_rate is above 100/5s.
stick-table type ip size 200k expire 1m store conn_rate(5s),gpc0
tcp-request track-counters src
tcp-request reject if { trk_get_gpc0 gt 0 }
tcp-request reject if { trk_conn_rate gt 100 } { trk_inc_gpc0 gt 0}
Alternatively, it is possible to let the entry expire even in presence of
traffic by swapping the check for gpc0 and the track-counters statement :
stick-table type ip size 200k expire 1m store conn_rate(5s),gpc0
tcp-request reject if { src_get_gpc0 gt 0 }
tcp-request track-counters src
tcp-request reject if { trk_conn_rate gt 100 } { trk_inc_gpc0 gt 0}
It is also possible not to track counters at all, but entry lookups will
then be performed more often :
stick-table type ip size 200k expire 1m store conn_rate(5s),gpc0
tcp-request reject if { src_get_gpc0 gt 0 }
tcp-request reject if { src_conn_rate gt 100 } { src_inc_gpc0 gt 0}
The '0' at the end of the counter name is there because if we find that more
counters may be useful, other ones will be added.
This function looks up a key, updates its expiration date, or creates
it if it was not found. acl_fetch_src_updt_conn_cnt() was updated to
make use of it.
These counters maintain incoming and outgoing byte rates in a stick-table,
over a period which is defined in the configuration (2 ms to 24 days).
They can be used to detect service abuse and enforce a certain bandwidth
limits per source address for instance, and block if the rate is passed
over. Since 32-bit counters are used to compute the rates, it is important
not to use too long periods so that we don't have to deal with rates above
4 GB per period.
Example :
# block if more than 5 Megs retrieved in 30 seconds from a source.
stick-table type ip size 200k expire 1m store bytes_out_rate(30s)
tcp-request track-counters src
tcp-request reject if { trk_bytes_out_rate gt 5000000 }
# cause a 15 seconds pause to requests from sources in excess of 2 megs/30s
tcp-request inspect-delay 15s
tcp-request content accept if { trk_bytes_out_rate gt 2000000 } WAIT_END
These counters maintain incoming connection rates and session rates
in a stick-table, over a period which is defined in the configuration
(2 ms to 24 days). They can be used to detect service abuse and
enforce a certain accept rate per source address for instance, and
block if the rate is passed over.
Example :
# block if more than 50 requests per 5 seconds from a source.
stick-table type ip size 200k expire 1m store conn_rate(5s),sess_rate(5s)
tcp-request track-counters src
tcp-request reject if { trk_conn_rate gt 50 }
# cause a 3 seconds pause to requests from sources in excess of 20 requests/5s
tcp-request inspect-delay 3s
tcp-request content accept if { trk_sess_rate gt 20 } WAIT_END
We're now able to return errors based on the validity of an argument
passed to a stick-table store data type. We also support ARG_T_DELAY
to pass delays to stored data types (eg: for rate counters).
Some data types will require arguments (eg: period for a rate counter).
This patch adds support for such arguments between parenthesis in the
"store" directive of the stick-table statement. Right now only integers
are supported.
Most of the time we'll want to check the connection count of the
criterion we're currently tracking. So instead of duplicating the
src* tests, let's add trk_conn_cnt to report the total number of
connections from the stick table entry currently being tracked.
A nice part of the code was factored, and we should do the same
for the other criteria.
The new "bytes_in_cnt" and "bytes_out_cnt" session counters have been
added. They're automatically updated when session counters are updated.
They can be matched with the "src_kbytes_in" and "src_kbytes_out" ACLs
which apply to the volume per source address. This can be used to deny
access to service abusers.
The new "conn_cur" session counter has been added. It is automatically
updated upon "track XXX" directives, and the entry is touched at the
moment we increment the value so that we don't consider further counter
updates as real updates, otherwise we would end up updating upon completion,
which may not be desired. Probably that some other event counters (eg: HTTP
requests) will have to be updated upon each event though.
This counter can be matched against current session's source address using
the "src_conn_cur" ACL.
It was not normal to have counter fetches in proto_tcp.c. The only
reason was that the key based on the source address was fetched there,
but now we have split the key extraction and data processing, we must
move that to a more appropriate place. Session seems OK since the
counters are all manipulated from here.
Also, since we're precisely counting number of connections with these
ACLs, we rename them src_conn_cnt and src_updt_conn_cnt. This is not
a problem right now since no version was emitted with these keywords.
The "_cnt" suffix is already used by ACLs to count various data,
so it makes sense to use the same one in "conn_cnt" instead of
"conn_cum" to count cumulated connections.
This is not a problem because no version was emitted with those
keywords.
Thus we'll try to stick to the following rules :
xxxx_cnt : cumulated event count for criterion xxxx
xxxx_cur : current number of concurrent entries for criterion xxxx
xxxx_rate: event rate for criterion xxxx