Server state file has no indication that a server is currently managed
by a DNS SRV resolution.
And thus, both feature (DNS SRV resolution and server state), when used
together, does not provide the expected behavior: a smooth experience...
This patch introduce the "SRV record name" in the server state file and
loads and applies it if found and wherever required.
This patch applies to haproxy-dev branch only. For backport, a specific patch
is provided for 1.8.
This patch improves the previous fix by implementing the socket draining
code directly in conn_sock_drain() so that it always applies regardless
of the protocol's family. Thus it gets rid of tcp_drain().
Since commit 843b7cb ("MEDIUM: chunks: make the chunk struct's fields
match the buffer struct") a chunk length is unsigned so we can remove
negative size checks.
Since commit 843b7cb ("MEDIUM: chunks: make the chunk struct's fields
match the buffer struct") a chunk length is unsigned so we can remove
negative size checks.
During a test it happened that a connection was deleted before the
stream it's attached to, resulting in a crash related to the fix
18a85fe ("BUG/MEDIUM: streams: Don't forget to remove the si from
the wait list.") during the LIST_DEL(). Make sure to always delete
the list's head in this case so that other elements can safely
detach later.
This is purely 1.9, no backport is needed.
Set the flag for the current thread in active_threads_mask when waking a
tasklet, or we will never run it if no tasks are available.
This is 1.9-specific, no backport is needed.
When we choose to insert a fd in either the global or the local fd update list,
and the thread_mask against all_threads_mask before checking if it's tid_bit,
that way, if we run with nbthreads==1, we will always use the local list,
which is cheaper than the global one.
Instead of just using the conn_stream wait_list, give the stream_interface
its own. When the conn_stream will have its own buffers, the stream_interface
may have to wait on it.
Instead of using si_cs_send() as a task handler, define a new function,
si_cs_io_cb(), and give si_cs_send() its original prototype. Right now
si_cs_io_cb() just handles send, but later it'll handle recv() too.
Modify tasklet_wakeup() so that it handles a task as well, and inserts it
directly into the tasklet list, making it effectively a tasklet.
This should make future developments easier.
This adds the set-priority-class and set-priority-offset actions to
http-request and tcp-request content. At this point they are not used
yet, which is the purpose of the next commit, but all the logic to
set and clear the values is there.
We'll need trees to manage the queues by priorities. This change replaces
the list with a tree based on a single key. It's effectively a list but
allows us to get rid of the list management right now.
We store the queue index in the stream and check it on dequeueing to
figure how many entries were processed in between. This way we'll be
able to count the elements that may later be added before ours.
The current name is misleading as it implies a queue size, but the value
instead indicates a position in the queue.
The value is only the queue size at the exact moment the element is enqueued.
Soon we will gain the ability to insert anywhere into the queue, upon which
clarity of the name is more important.
Commit 7ce0c89 ("MEDIUM: mux: Use the mux protocol specified on
bind/server lines") assumed a bit too strongly that we could only have
servers on the connect side :-) It segfaults under this config :
defaults
contimeout 5s
clitimeout 5s
srvtimeout 5s
mode http
listen test1
bind :8001
dispatch 127.0.0.1:8002
frontend test2
mode http
bind :8002
redirect location /
No backport needed.
To do so, mux choices are split to handle incoming and outgoing connections in a
different way. The protocol specified on the bind/server line is used in
priority. Then, for frontend connections, the ALPN is retrieved and used to
choose the best mux. For backend connection, there is no ALPN. Finaly, if no
protocol is specified and no protocol matches the ALPN, we fall back on a
default mux, choosing in priority the first mux with exactly the same mode.
Because there can be several default multiplexers (without name), they are now
reported with the name "<default>". And a message warns they cannot be
referenced with the "proto" keyword on a bind line or a server line.
The update lock was removed by the commit 91c2826e1 ("CLEANUP: server: remove
the update list and the update lock"). But the lock label was not which makes
the compilation fail in debug mode.
pour vos modifications. Les lignes # commençant par '#' seront ignorées, et un
message vide abandonne la validation. # # Sur la branche temp # Votre branche
est en avance sur 'origin/master' de 87 commits. # (utilisez "git push" pour
publier vos commits locaux) # # Modifications qui seront validées : # modifié :
include/common/hathreads.h #
Now we try to synchronously push updates as they come using the new rdv
point, so that the call to the server update function from the main poll
loop is not needed anymore.
It further reduces the apparent latency in the health checks as the response
time almost always appears as 0 ms, resulting in a slightly higher check rate
of ~1960 conn/s. Despite this, the CPU consumption has slightly dropped again
to ~32% for the same test.
The only trick is that the checks code is built with a bit of recursivity
because srv_update_status() calls server_recalc_eweight(), and the latter
needs to signal srv_update_status() in case of updates. Thus we added an
extra argument to this function to indicate whether or not it must
propagate updates (no if it comes from srv_update_status).
Multiplexers are not necessarily associated to an ALPN. ALPN is a TLS extension,
so it is not always defined or used. Instead, we now rather speak of
multiplexer's protocols. So in this patch, there are no significative changes,
some structures and functions are just renamed.
Now, a multiplexer can specify if it can be install on incoming connections
(ALPN_SIDE_FE), on outgoing connections (ALPN_SIDE_BE) or both
(ALPN_SIDE_BOTH). These flags are compatible with proxies' ones.
This function is generic and is able to automatically transfer data from a
buffer to the conn_stream's tx buffer. It does this automatically if the mux
doesn't define another snd_buf() function.
It cannot yet be used as-is with the conn_stream's txbuf without risking to
lose data on close since conn_streams need to be orphaned for this.
To be symmetrical with the recv() part, we no handle retryable and partial
transmission using a intermediary buffer in the conn_stream. For now it's only
set to BUF_NULL and never allocated nor used.
It cannot yet be used as-is without risking to lose data on close since
conn_streams need to be orphaned for this.
This is a partial revert of the commit deccd1116 ("MEDIUM: mux: make
mux->snd_buf() take the byte count in argument"). It is a requirement to do
zero-copy transfers. This will be mandatory when the TX buffer of the
conn_stream will be used.
So, now, data are consumed by mux->snd_buf() and not only sent. So it needs to
update the buffer state. On its side, the caller must be aware the buffer can be
replaced y an empty or unallocated one.
As a side effet of this change, the function co_set_data() is now only responsible
to update the channel set, by update ->output field.
When b_slow_realign is called with the <output> parameter equal to 0, the
buffer's head, after the realign, must be set to 0. It was errornously set to
the buffer's size, because there was no test on the value of <output>.
The current synchronization point enforces certain restrictions which
are hard to workaround in certain areas of the code. The fact that the
critical code can only be called from the sync point itself is a problem
for some callback-driven parts. The "show fd" command for example is
fragile regarding this.
Also it is expensive in terms of CPU usage because it wakes every other
thread just to be sure all of them join to the rendez-vous point. It's a
problem because the sleeping threads would not need to be woken up just
to know they're doing nothing.
Here we implement a different approach. We keep track of harmless threads,
which are defined as those either doing nothing, or doing harmless things.
The rendez-vous is used "for others" as a way for a thread to isolate itself.
A thread then requests to be alone using thread_isolate() when approaching
the dangerous area, and then waits until all other threads are either doing
the same or are doing something harmless (typically polling). The function
only returns once the thread is guaranteed to be alone, and the critical
section is terminated using thread_release().
When threads are disabled, some variables such as tid and tid_bit are
still checked everywhere, the MAX_THREADS_MASK macro is ~0UL while
MAX_THREADS is 1, and the all_threads_mask variable is replaced with a
macro forced to zero. The compiler cannot optimize away all this code
involving checks on tid and tid_bit, and we end up in special cases
where all_threads_mask has to be specifically tested for being zero or
not. It is not even certain the code paths are always equivalent when
testing without threads and with nbthread 1.
Let's change this to make sure we always present a single thread when
threads are disabled, and have the relevant values declared as constants
so that the compiler can optimize all the tests away. Now we have
MAX_THREADS_MASK set to 1, all_threads_mask set to 1, tid set to zero
and tid_bit set to 1. Doing just this has removed 4 kB of code in the
no-thread case.
A few checks for all_threads_mask==0 have been removed since it never
happens anymore.
An offsetof() macro was introduced with commit 928fbfa ("MINOR: compiler:
introduce offsetoff().") with a fallback for older compilers. But this
breaks gcc 3.4 because __size_t and __uintptr_t are not defined there.
However size_t and uintptr_t are, so let's fix it this way. No backport
needed.
The purpose is to make sure that all variables which directly depend
on this nbthread argument are set at the right moment. For now only
all_threads_mask needs to be set. It used to be set while calling
thread_sync_init() which is called too late for certain checks. The
same function handles threads and non-threads, which removes the need
for some thread-specific knowledge from cfgparse.c.
If nbthread is MAX_THREADS, the shift operation needed to compute
all_threads_mask fails in thread_sync_init(). Instead pass a number
of threads to this function and let it compute the mask without
overflowing.
This should be backported to 1.8.
Since BoringSSL 3b2ff028, API now correctly match OpenSSL 1.1.0.
The patch revert part of haproxy 019f9b10: "Fix BoringSSL call and
openssl-compat.h/#define occordingly.".
This will not break openssl/libressl compat.
Add a new pipe, one per thread, so that we can write on it to wake a thread
sleeping in a poller, and use it to wake threads supposed to take care of a
task, if they are all sleeping.
This lock was necessary to manipulate the pendconn element between
concurrent places, but was causing great difficulties in the list walk
by having to iterate over multiple entries instead of being able to
safely pick the first one (in fact the first element was always the
right one but the locking model was hard to prove).
Here since we know we can always rely on the queue's locks, we take
the queue's lock every time we need to modify the element. In practice
it was already the case everywhere except in pendconn_dequeue() which
only works on an element that was already detached. This function had
to be protected against the risk of meeting an incompletely detached
element (which could be unlinked but not yet assigned). By taking the
queue lock around the LIST_ISEMPTY test, it's enough to ensure that a
concurrent thread either didn't begin or had completed the operation.
The true benefit really is in pendconn_process_next_strm() where we
can again safely work with the first element of each queue. This will
significantly simplify next updates to this code.
The pendconn struct uses ->px and ->srv to designate where the element is
queued. There is something confusing regarding threads though, because we
have to lock the appropriate queue before inserting/removing elements, and
this queue may only be determined by looking at ->srv (if it's not NULL
it's the server, otherwise use the proxy). But pendconn_grab_from_px() and
pendconn_process_next_strm() both assign this ->srv field, making it
complicated to know what queue to lock before manipulating the element,
which is exactly why we have the pendconn_lock in the first place.
This commit introduces pendconn->target which is the target server that
the two aforementioned functions will set when assigning the server.
Thanks to this, the server pointer may always be relied on to determine
what queue to use.
Now pendconn_free() takes a stream, checks that pend_pos is set, clears
it, and uses pendconn_unlink() to complete the job. It's cleaner and
centralizes all the bookkeeping work in pendconn_unlink() only and
ensures that there's a single place where the stream's position in the
queue is manipulated.
For now the pendconns may be dequeued at two places :
- pendconn_unlink(), which operates on a locked queue
- pendconn_free(), which operates on an unlocked queue and frees
everything.
Some changes are coming to the queue and we'll need to be able to be a
bit stricter regarding the places where we dequeue to keep the accounting
accurate. This first step renames the locked function __pendconn_unlink()
as it's for use by those aware of it, and introduces a new general purpose
pendconn_unlink() function which automatically grabs the necessary locks
before calling the former, and pendconn_cond_unlink() which additionally
checks the pointer and the presence in the queue.
As __task_wakeup() is responsible for increasing
rqueue_local[tid]/global_rqueue_size, make __task_unlink_rq responsible for
decreasing it, as process_runnable_tasks() isn't the only one that removes
tasks from runqueues.
By removing the reason code for the wakeup we can gain 8 extra bits to
encode the task's state. The reason code was never used at all and is
wrong by design since subsequent calls will OR this value anyway. Let's
say it goodbye and leave the room for more precious bits. The woken bits
were moved to the higher byte so that the most important bits can stay
grouped together.
Whenever it's possible to avoid a copy, b_xfer() will simply swap the
buffer's heads without touching the data. This has brought the performance
back from 140 kH/s to 202 kH/s on the test case.
This function is generic and is able to automatically transfer data
from a conn_stream's rx buffer to the destination buffer. It does this
automatically if the mux doesn't define another rcv_buf() function.
In order to reorganize the connection layers, recv() operations will
need to be retryable and to support partial transfers. This requires
an intermediary buffer to hold the data coming from the mux. After a
few attempts, it turns out that this buffer is best placed inside the
conn_stream itself. For now it's only set to buf_empty and it will be
up to the caller to allocate it if required.
The latter function is more suited to operations that don't require any
check because the check has already been performed. It will be used by
other b_* functions.
This function is used a lot in block copies and is needlessly
complicated since it still uses pointer arithmetic. Let's fall
back to regular offsets and simplify it. This removed around
23 bytes from b_putblk() and it removed any conditional jump.
In thread_sync_barrier, we exit when all threads have set their own bit in the
barrier mask. It is done by comparing it to all_threads_mask. But we must not
use a simple equality to do so, becaue all_threads_mask may change. Since commit
ba86c6c25 ("MINOR: threads: Be sure to remove threads from all_threads_mask on
exit"), when a thread exit, its bit is removed from all_threads_mask. Instead,
we must use a bitwise AND to test is all bits of all_threads_mask are set.
This also requires that all_threads_mask is set to volatile if we want to
catch changes.
This patch must be backported in 1.8.
This new function wl_set_waitcb() prepopulates a wait_list with a tasklet
and a context and returns it so that it can be passed to ->subscribe() to
be added to a connection or conn_stream's wait_list. The caller doesn't
need to know all the insiders details anymore this way.
Totally nuke the "send" method, instead, the upper layer decides when it's
time to send data, and if it's not possible, uses the new subscribe() method
to be called when it can send data again.
Add a new "subscribe" method for connection, conn_stream and mux, so that
upper layer can subscribe to them, to be called when the event happens.
Right now, the only event implemented is "SUB_CAN_SEND", where the upper
layer can register to be called back when it is possible to send data.
The connection and conn_stream got a new "send_wait_list" entry, which
required to move a few struct members around to maintain an efficient
cache alignment (and actually this slightly improved performance).
Now all the code used to manipulate chunks uses a struct buffer instead.
The functions are still called "chunk*", and some of them will progressively
move to the generic buffer handling code as they are cleaned up.
Chunks are only a subset of a buffer (a non-wrapping version with no head
offset). Despite this we still carry a lot of duplicated code between
buffers and chunks. Replacing chunks with buffers would significantly
reduce the maintenance efforts. This first patch renames the chunk's
fields to match the name and types used by struct buffers, with the goal
of isolating the code changes from the declaration changes.
Most of the changes were made with spatch using this coccinelle script :
@rule_d1@
typedef chunk;
struct chunk chunk;
@@
- chunk.str
+ chunk.area
@rule_d2@
typedef chunk;
struct chunk chunk;
@@
- chunk.len
+ chunk.data
@rule_i1@
typedef chunk;
struct chunk *chunk;
@@
- chunk->str
+ chunk->area
@rule_i2@
typedef chunk;
struct chunk *chunk;
@@
- chunk->len
+ chunk->data
Some minor updates to 3 http functions had to be performed to take size_t
ints instead of ints in order to match the unsigned length here.
Now the buffers only contain the header and a pointer to the storage
area which can be anywhere. This will significantly simplify buffer
swapping and will make it possible to map chunks on buffers as well.
The buf_empty variable was removed, as now it's enough to have size==0
and area==NULL to designate the empty buffer (thus a non-allocated head
is the empty buffer by default). buf_wanted for now is indicated by
size==0 and area==(void *)1.
The channels and the checks now embed the buffer's head, and the only
pointer is to the storage area. This slightly increases the unallocated
buffer size (3 extra ints for the empty buffer) but considerably
simplifies dynamic buffer management. It will also later permit to
detach unused checks.
The way the struct buffer is arranged has proven quite efficient on a
number of tests, which makes sense given that size is always accessed
and often first, followed by the othe ones.
It used to be called 'len' during the reorganisation but strictly speaking
it's not a length since it wraps. Also we already use '_data' as the suffix
to count available data, and data is also what we use to indicate the amount
of data in a pipe so let's improve consistency here. It was important to do
this in two operations because data used to be the name of the pointer to
the storage area.
This one is more generic and designed to work on a random block. It
may later get a b_rep_ist() variant since many strings are already
available as (ptr,len).
There was no point keeping that function in the buffer part since it's
exclusively used by HTTP at the channel level, since it also automatically
appends the CRLF. This further cleans up the buffer code.
The new file istbuf.h links the indirect strings (ist) with the buffers.
The purpose is to encourage addition of more standard buffer manipulation
functions that rely on this in order to improve the overall ease of use
along all the code. Just like ist.h and buf.h, this new file is not
expected to depend on anything beyond these two files.
A few functions were added and/or converted from buffer.h :
- b_isteq() : indicates if a buffer and a string match
- b_isteat() : consumes a string from the buffer if it matches
- b_istput() : appends a small string to a buffer (all or none)
- b_putist() : appends part of a large string to a buffer
The equivalent functions were removed from buffer.h and changed at the
various call places.
The two variants now do exactly the same (appending at the tail of the
buffer) so let's not keep the distinction between these classes of
functions and have generic ones for this. It's also worth noting that
b{i,o}_putchk() wasn't used at all and was removed.
There's no distinction between in and out data now. The latter covers
the needs of the former and supports wrapping. The extra cost is
negligible given the locations where it's used.
Since we never access this field directly anymore, but only through the
channel's wrappers, it can now move to the channel. The buffers are now
completely free from the distinction between input and output data.
Since we use "_data" for the amount of data at many places, as opposed to
"_space" for the amount of space, let's rename the "data" field to "area"
so that we can reuse "data" later for the amount of data in the buffer
(currently called "len" despite not being contigous).
b_set_data() is used :
- in proto_http and hlua to trim input data (b_set_data(co_data()))
- in SPOE to append data to a buffer while building a message
In no case will this truncate a buffer so we can safely remove the
test for len < b->output.
b_del() is used in :
- mux_h2 with the demux buffer : always processes input data
- checks with output data though output is not considered at all there
- b_eat() which is not used anywhere
- co_skip() where the len is always <= output
Thus the distinction for output data is not needed anymore and the
decrement can be made inconditionally in co_skip().
This is intentionally the minimal and safest set of changes, some cleanups
area still required. These changes are quite tricky and cannot be
independantly tested, so it's important to keep this patch as bisectable
as possible.
buf_empty and buf_wanted were changed and are now exactly similar since
there's no <p> member in the structure anymore. Given that no test is
ever made in the code to check that buf == &buf_wanted, it may be possible
that we don't need to have two anymore, unless some buf_empty tests have
precedence. This will have to be investigated.
A significant part of this commit affects the HTTP compression code,
which used to deeply manipulate the input and output buffers without
any reasonable solution for a better abstraction. For this reason, if
any regression is met and designates this patch as the culprit, it is
important to run tests which specifically involve compression or which
definitely don't use it in order to spot the issue.
Cc: Olivier Houchard <ohouchard@haproxy.com>
For the same consistency reasons, let's use b_empty() at the few places
where an empty buffer is expected, or c_empty() if it's done on a channel.
Some of these places were there to realign the buffer so
{b,c}_realign_if_empty() was used instead.
We used to have variations around buffer_total_space() and
size-buffer_len() or size-b_data(). Let's simplify all this. buffer_len()
was also removed as not used anymore.
Now the new API functions are being used everywhere, we can get rid
of b_ptr(). A few last users like bi_istput() and bo_istput() appear
to only differ by what part of the buffer they're increasing, but
that should quickly be merged.
With this flag we introduce the notion of "dry" vs "wet" buffers : some
demultiplexers like the H2 mux require as much room as possible for some
operations that are not retryable like decoding a headers frame. For this
they need to know if the buffer is congested with data scheduled for
leaving soon or not. Since the new API will not provide this information
in the buffer itself, the caller must indicate it. We never need to know
the amount of such data, just the fact that the buffer is not in its
optimal condition to be used for receipt. This "CO_RFL_BUF_WET" flag is
used to mention that such outgoing data are still pending in the buffer
and that a sensitive receiver should better let it "dry" before using it.
The mux and transport rcv_buf() now takes a "flags" argument, just like
the snd_buf() one or like the equivalent syscall lower part. The upper
layers will use this to pass some information such as indicating whether
the buffer is free from outgoing data or if the lower layer may allocate
the buffer itself.
It also returns a size_t. This is in order to clean the API. Note
that the H2 mux still uses some ints in the functions called from
h2_rcv_buf(), though it's not really a problem given that H2 frames
are smaller. It may deserve a general cleanup later though.
Just like we have a size_t for xprt->snd_buf(), we adjust to use size_t
for rcv_buf()'s count argument and return value. It also removes the
ambiguity related to the possibility to see a negative value there.