The appctx owner is now always a conn-stream. Thus, it can be set during the
appctx allocation. But, to do so, the conn-stream must be created first. It
is not a problem on the server side because the conn-stream is created with
the stream. On the client side, we must take care to create the conn-stream
first.
This change should ease other changes about the applets bootstrapping.
This patch is mandatory to invert the endpoint and the context in the
conn-stream. There is no common type (at least for now) for the entity
representing a mux (h1s, h2s...), thus we must set its type when the
endpoint is attached to a conn-stream. There is 2 types for the conn-stream
endpoints: the mux (CS_FL_ENDP_MUX) and the applet (CS_FL_ENDP_APP).
For now there is no much change. Only the appctx is passed as argument when
the .init callback function is called. And it is not possible to yield at
this stage. It is not a problem because the feature is not used. Only the
lua defines this callback function for the lua TCP/HTTP services. The idea
is to be able to use it for all applets to initialize the appctx context.
First gcc, then now coverity report possible null derefs in situations
where we know these cannot happen since we call the functions in
contexts that guarantee the existence of the connection and the method
used. Let's introduce an unchecked version of the function for such
cases, just like we had to do with objt_*. This allows us to remove the
ALREADY_CHECKED() statements (which coverity doesn't see), and addresses
github issues #1643, #1644, #1647.
It was supposed to be there, and probably was not placed there due to
historic limitations in listener_accept(), but now there does not seem
to be a remaining valid reason for keeping the quic_conn out of the
handle. In addition in new_quic_cli_conn() the handle->fd was incorrectly
set to the listener's FD.
Historically there was a single way to have an SSL transport on a
connection, so detecting if the transport layer was SSL and a context
was present was sufficient to detect SSL. With QUIC, things have changed
because QUIC also relies on SSL, but the context is embedded inside the
quic_conn and the transport layer doesn't match expectations outside,
making it difficult to detect that SSL is in use over the connection.
The approach taken here to improve this consists in adding a new method
at the transport layer, get_ssl_sock_ctx(), to retrieve this often needed
ssl_sock_ctx, and to use this to detect the presence of SSL. This will
even allow some simplifications and cleanups to be made in the SSL code
itself, and QUIC will be able to provide one to export its ssl_sock_ctx.
These functions will allow the connection layer to retrieve a quic_conn's
source or destination when possible. The quic_conn holds the peer's address
but not the local one, and the sockets API doesn't always makes that easy
for datagrams. Thus for frontend connection what we're doing here is to
retrieve the listener's address when the destination address is desired.
Now it finally becomes possible to fetch the source and destination using
"src" and "dst", and to pass an incoming connection's endpoints via the
proxy protocol.
Right now the proto_fam descriptor provides a family-specific
get_src() and get_dst() pair of calls to retrieve a socket's source
or destination address. However this only works for connected mode
sockets. QUIC provides its own stream protocol, which relies on a
datagram protocol underneath, so the get_src()/get_dst() at that
protocol's family will not work, and QUIC would need to provide its
own.
This patch implements get_src() and get_dst() at the protocol level
from a connection, and makes sure that conn_get_src()/conn_get_dst()
will automatically use them if defined before falling back to the
family's pair of functions.
We'll want conn_get_src/dst to support other means of retrieving these
respective IP addresses, but the functions as they're designed are a bit
too restrictive for now.
This patch arranges them to have a default error fallback allowing to
test different mechanisms. In addition we now make sure the underlying
protocol is of type stream before calling the family's get_src/dst as
it makes no sense to do that on dgram sockets for example.
Certain functions cannot be called on an FD-less conn because they are
normally called as part of the protocol-specific setup/teardown sequence.
Better place a few BUG_ON() to make sure none of them is called in other
situations. If any of them would trigger in ambiguous conditions, it would
always be possible to replace it with an error.
Some syscalls at the TCP level act directly on the FD. Some of them
are used by TCP actions like set-tos, set-mark, silent-drop, others
try to retrieve TCP info, get the source or destination address. These
ones must not be called with an invalid FD coming from an FD-less
connection, so let's add the relevant tests for this. It's worth
noting that all these ones already have fall back plans (do nothing,
error, or switch to alternate implementation).
There are plenty of places (particularly in debug code) where we try to
dump the connection's FD only when the connection is defined. That's
already a pain but now it gets one step further with QUIC because we do
*not* want to dump this FD in this case.
conn_fd() checks if the connection exists, is ready and is not fd-less,
and returns the FD only in this case, otherwise returns -1. This aims at
simplifying most of these conditions.
QUIC connections do not use a file descriptor, instead they use the
quic equivalent which is the quic_conn. A number of our historical
functions at the connection level continue to unconditionally touch
the file descriptor and this may have consequences once QUIC starts
to be used.
This patch adds a new flag on QUIC connections, CO_FL_FDLESS, to
mention that the connection doesn't have a file descriptor, hence the
FD-based API must never be used on them.
From now on it will be possible to intrument existing functions to
panic when this flag is present.
The OpenSSL engine API is deprecated starting with OpenSSL 3.0.
In order to have a clean build this feature is now disabled by default.
It can be reactivated with USE_ENGINE=1 on the build line.
The new 'close-spread-time' global option can be used to spread idle and
active HTTP connction closing after a SIGUSR1 signal is received. This
allows to limit bursts of reconnections when too many idle connections
are closed at once. Indeed, without this new mechanism, in case of
soft-stop, all the idle connections would be closed at once (after the
grace period is over), and all active HTTP connections would be closed
by appending a "Connection: close" header to the next response that goes
over it (or via a GOAWAY frame in case of HTTP2).
This patch adds the support of this new option for HTTP as well as HTTP2
connections. It works differently on active and idle connections.
On active connections, instead of sending systematically the GOAWAY
frame or adding the 'Connection: close' header like before once the
soft-stop has started, a random based on the remainder of the close
window is calculated, and depending on its result we could decide to
keep the connection alive. The random will be recalculated for any
subsequent request/response on this connection so the GOAWAY will still
end up being sent, but we might wait a few more round trips. This will
ensure that goaways are distributed along a longer time window than
before.
On idle connections, a random factor is used when determining the expire
field of the connection's task, which should naturally spread connection
closings on the time window (see h2c_update_timeout).
This feature request was described in GitHub issue #1614.
This patch should be backported to 2.5. It depends on "BUG/MEDIUM:
mux-h2: make use of http-request and keep-alive timeouts" which
refactorized the timeout management of HTTP2 connections.
We modify the key update feature implementation to support reusable cipher contexts
as this is done for the other cipher contexts for packet decryption and encryption.
To do so we attach a context to the quic_tls_kp struct and initialize it each time
the underlying secret key is updated. Same thing when we rotate the secrets keys,
we rotate the contexts as the same time.
Add ->ctx new member field to quic_tls_secrets struct to store the cipher context
for each QUIC TLS context TX/RX parts.
Add quic_tls_rx_ctx_init() and quic_tls_tx_ctx_init() functions to initialize
these cipher context for RX and TX parts respectively.
Make qc_new_isecs() call these two functions to initialize the cipher contexts
of the Initial secrets. Same thing for ha_quic_set_encryption_secrets() to
initialize the cipher contexts of the subsequent derived secrets (ORTT, Handshake,
1RTT).
Modify quic_tls_decrypt() and quic_tls_encrypt() to always use the same cipher
context without allocating it each time they are called.
Define a new API to notify the MUX from the quic-conn when the
connection is about to be closed. This happens in the following cases :
- on idle timeout
- on CONNECTION_CLOSE emission or reception
The MUX wake callback is called on these conditions. The quic-conn
QUIC_FL_NOTIFY_CLOSE is set to only report once. On the MUX side,
connection flags CO_FL_SOCK_RD_SH|CO_FL_SOCK_WR_SH are set to interrupt
future emission/reception.
This patch is the counterpart to
"MEDIUM: mux-quic: report CO_FL_ERROR on send".
Now the quic-conn is able to report its closing, which may be translated
by the MUX into a CO_FL_ERROR on the connection for the upper layer.
This allows the MUX to properly react to the QUIC closing mechanism for
both idle-timeout and closing/draining states.
Complete the error reporting. For each attached streams, if CO_FL_ERROR
is set, mark them with CS_FL_ERR_PENDING|CS_FL_ERROR. This will notify
the upper layer to trigger streams detach and release of the MUX.
This reporting is implemented in a new function qc_wake_some_streams(),
called by qc_wake(). This ensures that a lower-layer error is quickly
reported to the individual streams.
Add a new app layer operation is_active. This can be used by the MUX to
check if the connection can be considered as active or not. This is used
inside qcc_is_dead as a first check.
For example on HTTP/3, if there is at least one bidir client stream
opened the connection is active. This explicitly ignore the uni streams
used for control and qpack as they can never be closed during the
connection lifetime.
Improve timeout handling on the MUX. When releasing a stream, first
check if the connection can be considered as dead and should be freed
immediatly. This allows to liberate resources faster when possible.
If the connection is still active, ensure there is no attached
conn-stream before scheduling the timeout. To do this, add a nb_cs field
in the qcc structure.
This flag was used to notify the MUX about a CONNECTION_CLOSE frame
reception. It is now unused on the MUX side and can be removed. A new
mechanism to detect quic-conn closing will be soon implemented.
Rationalize the lifetime of the quic-conn regarding with the MUX. The
quic-conn must not be freed if the MUX is still allocated.
This simplify the MUX code when accessing the quic-conn and removed
possible segfaults.
To implement this, if the quic-conn timer expired, the quic-conn is
released only if the MUX is not allocated. Else, the quic-conn is
flagged with QUIC_FL_CONN_EXP_TIMER. The MUX is then responsible
to call quic_close() which will free the flagged quic-conn.
New received packets after sending CONNECTION_CLOSE frame trigger a new
CONNECTION_CLOSE frame to be sent. Each time such a frame is sent we
increase the number of packet required to send another CONNECTION_CLOSE
frame.
Rearm only one time the idle timer when sending a CONNECTION_CLOSE frame.
This should be useful to have an idea of the list of frames which could be built
towards the list of available frames when building packets.
Same thing about the frames which could not be built because of a lack of room
in the TX buffer.
Due to a erroneous interpretation of the RFC 9000 (quic-transport), ACKs frames
were always sent only after having received two ack-eliciting packets.
This could trigger useless retransmissions for tail packets on the peer side.
For now on, we send as soon as possible ACK frames as soon as we have ACK to send,
in the same packets as the ack-eliciting frame packets, and we also send ACK
frames after having received 2 ack-eliciting packets since the last time we sent
an ACK frame with other ack-eliciting frames.
As such variables are handled by the QUIC connection I/O handler which runs
always on the thread, there is no need to continue to use such atomic operations
The new qc_stream_desc type has a tree node for storage. Thus, we can
remove the node in the qcs structure.
When initializing a new stream, it is stored into the qcc streams_by_id
tree. When the MUX releases it, it will freed as soon as its buffer is
emptied. Before this, the quic-conn is responsible to store it inside
its own streams_by_id tree.
Move the xprt-buf and ack related fields from qcs to the qc_stream_desc
structure. In exchange, qcs has a pointer to the low-level stream. For
each new qcs, a qc_stream_desc is automatically allocated.
This simplify the transport layer by removing qcs/mux manipulation
during ACK frame parsing. An additional check is done to not notify the
MUX on sending if the stream is already released : this case may now
happen on retransmission.
To complete this change, the quic_stream frame now references the
quic_stream instance instead of a qcs.
Currently, the mux qcs streams manage the Tx buffering, even after
sending it to the transport layer. Buffers are emptied when
acknowledgement are treated by the transport layer. This complicates the
MUX liberation and we may loose some data after the MUX free.
Change this paradigm by moving the buffering on the transport layer. For
this goal, a new type is implemented as low-level stream at the
transport layer, as a counterpart of qcs mux instances. This structure
is called qc_stream_desc. This will allow to free the qcs/qcc instances
without having to wait for acknowledge reception.
For the moment, the quic-conn is responsible to store the qc_stream_desc
in a new tree named streams_by_id. This will sligthly change in the next
commits to remove the qcs node which has a similar purpose :
qc_stream_desc instances will be shared between the qcc MUX and the
quic-conn.
This patch only introduces the new type definition and the function to
manipulate it. The following commit will bring the rearchitecture in the
qcs structure.
Define a new callback release inside qcc_app_ops. It is called when the
qcc MUX is freed via qc_release. This will allows to implement cleaning
on the app layer.
Regroup some cleaning operations inside a new function qcs_free. This
can be used for all streams, both through qcs_destroy and with
uni-directional streams.
The CertCache.set() function allows to update an SSL certificate file
stored in the memory of the HAProxy process. This function does the same
as "set ssl cert" + "commit ssl cert" over the CLI.
This could be used to update the crt and key, as well as the OCSP, the
SCTL, and the OSCP issuer.
The implementation does yield every 10 ckch instances, the same way the
"commit ssl cert" do.
Extract the code that replace the ckch_store and its dependencies into
the ckch_store_replace() function.
This function must be used under the global ckch lock.
It frees everything related to the old ckch_store.
The new function dump_act_rules() now dumps the list of actions supported
by a ruleset. These actions are alphanumerically sorted first so that the
produced output is easy to compare.
When trying to sort sets of strings, it's often needed to required to
compare 3 strings to see if the chosen one fits well between the two
others. That's what this function does, in addition to being able to
ignore extremities when they're NULL (typically for the first iteration
for example).
Similar to the sample fetch keywords, let's also list the converter
keywords. They're much simpler since there's no compatibility matrix.
Instead the input and output types are listed. This is called by
dump_registered_keywords() for the "cnv" keywords class.
New function smp_dump_fetch_kw lists registered sample fetch keywords
with their compatibility matrix, mandatory and optional argument types,
and output types. It's called from dump_registered_keywords() with class
"smp".
New function acl_dump_kwd() dumps the registered ACL keywords and their
sample-fetch equivalent to stdout. It's called by dump_registered_keywords()
for keyword class "acl".
New function cli_list_keywords() scans the list of registered CLI keywords
and dumps them on stdout. It's now called from dump_registered_keywords()
for the class "cli".
Some keywords are valid for the master, they'll be suffixed with
"[MASTER]". Others are valid for the worker, they'll have "[WORKER]".
Those accessible only in expert mode will show "[EXPERT]" and the
experimental ones will show "[EXPERIM]".
All registered config keywords that are valid in the config parser are
dumped to stdout organized like the regular sections (global, listen,
etc). Some keywords that are known to only be valid in frontends or
backends will be suffixed with [FE] or [BE].
All regularly registered "bind" and "server" keywords are also dumped,
one per "bind" or "server" line. Those depending on ssl are listed after
the "ssl" keyword. Doing so required to export the listener and server
keyword lists that were static.
The function is called from dump_registered_keywords() for keyword
class "cfg".