go-jsonnet/parser/lexer.go
Stanisław Barzowski c3459153df Location, error formatting and stack trace improvements (#59)
* Location, error formatting and stack trace improvements

* Static context for AST nodes
* Thunks no longer need `name`
* Prototype for showing snippets in error messages (old format still
available)
* Use ast.Function to represent methods and local function sugar.
* Change tests so that the error output is pretty
2017-10-03 14:27:44 -04:00

818 lines
20 KiB
Go

/*
Copyright 2016 Google Inc. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package parser
import (
"bytes"
"fmt"
"strconv"
"strings"
"unicode/utf8"
"github.com/google/go-jsonnet/ast"
)
// ---------------------------------------------------------------------------
// Fodder
//
// Fodder is stuff that is usually thrown away by lexers/preprocessors but is
// kept so that the source can be round tripped with full fidelity.
type fodderKind int
const (
fodderWhitespace fodderKind = iota
fodderCommentC
fodderCommentCpp
fodderCommentHash
)
type fodderElement struct {
kind fodderKind
data string
}
type fodder []fodderElement
// ---------------------------------------------------------------------------
// Token
type tokenKind int
const (
// Symbols
tokenBraceL tokenKind = iota
tokenBraceR
tokenBracketL
tokenBracketR
tokenComma
tokenDollar
tokenDot
tokenParenL
tokenParenR
tokenSemicolon
// Arbitrary length lexemes
tokenIdentifier
tokenNumber
tokenOperator
tokenStringBlock
tokenStringDouble
tokenStringSingle
tokenVerbatimStringDouble
tokenVerbatimStringSingle
// Keywords
tokenAssert
tokenElse
tokenError
tokenFalse
tokenFor
tokenFunction
tokenIf
tokenImport
tokenImportStr
tokenIn
tokenLocal
tokenNullLit
tokenSelf
tokenSuper
tokenTailStrict
tokenThen
tokenTrue
// A special token that holds line/column information about the end of the
// file.
tokenEndOfFile
)
var tokenKindStrings = []string{
// Symbols
tokenBraceL: "\"{\"",
tokenBraceR: "\"}\"",
tokenBracketL: "\"[\"",
tokenBracketR: "\"]\"",
tokenComma: "\",\"",
tokenDollar: "\"$\"",
tokenDot: "\".\"",
tokenParenL: "\"(\"",
tokenParenR: "\")\"",
tokenSemicolon: "\";\"",
// Arbitrary length lexemes
tokenIdentifier: "IDENTIFIER",
tokenNumber: "NUMBER",
tokenOperator: "OPERATOR",
tokenStringBlock: "STRING_BLOCK",
tokenStringDouble: "STRING_DOUBLE",
tokenStringSingle: "STRING_SINGLE",
tokenVerbatimStringDouble: "VERBATIM_STRING_DOUBLE",
tokenVerbatimStringSingle: "VERBATIM_STRING_SINGLE",
// Keywords
tokenAssert: "assert",
tokenElse: "else",
tokenError: "error",
tokenFalse: "false",
tokenFor: "for",
tokenFunction: "function",
tokenIf: "if",
tokenImport: "import",
tokenImportStr: "importstr",
tokenIn: "in",
tokenLocal: "local",
tokenNullLit: "null",
tokenSelf: "self",
tokenSuper: "super",
tokenTailStrict: "tailstrict",
tokenThen: "then",
tokenTrue: "true",
// A special token that holds line/column information about the end of the
// file.
tokenEndOfFile: "end of file",
}
func (tk tokenKind) String() string {
if tk < 0 || int(tk) >= len(tokenKindStrings) {
panic(fmt.Sprintf("INTERNAL ERROR: Unknown token kind:: %d", tk))
}
return tokenKindStrings[tk]
}
type token struct {
kind tokenKind // The type of the token
fodder fodder // Any fodder the occurs before this token
data string // Content of the token if it is not a keyword
// Extra info for when kind == tokenStringBlock
stringBlockIndent string // The sequence of whitespace that indented the block.
stringBlockTermIndent string // This is always fewer whitespace characters than in stringBlockIndent.
loc ast.LocationRange
}
type tokens []token
func (t *token) String() string {
if t.data == "" {
return t.kind.String()
} else if t.kind == tokenOperator {
return fmt.Sprintf("\"%v\"", t.data)
} else {
return fmt.Sprintf("(%v, \"%v\")", t.kind, t.data)
}
}
// ---------------------------------------------------------------------------
// Helpers
func isUpper(r rune) bool {
return r >= 'A' && r <= 'Z'
}
func isLower(r rune) bool {
return r >= 'a' && r <= 'z'
}
func isNumber(r rune) bool {
return r >= '0' && r <= '9'
}
func isIdentifierFirst(r rune) bool {
return isUpper(r) || isLower(r) || r == '_'
}
func isIdentifier(r rune) bool {
return isIdentifierFirst(r) || isNumber(r)
}
func isSymbol(r rune) bool {
switch r {
case '!', '$', ':', '~', '+', '-', '&', '|', '^', '=', '<', '>', '*', '/', '%':
return true
}
return false
}
// Check that b has at least the same whitespace prefix as a and returns the
// amount of this whitespace, otherwise returns 0. If a has no whitespace
// prefix than return 0.
func checkWhitespace(a, b string) int {
i := 0
for ; i < len(a); i++ {
if a[i] != ' ' && a[i] != '\t' {
// a has run out of whitespace and b matched up to this point. Return
// result.
return i
}
if i >= len(b) {
// We ran off the edge of b while a still has whitespace. Return 0 as
// failure.
return 0
}
if a[i] != b[i] {
// a has whitespace but b does not. Return 0 as failure.
return 0
}
}
// We ran off the end of a and b kept up
return i
}
// ---------------------------------------------------------------------------
// Lexer
type position struct {
byteNo int // Byte position of last rune read
lineNo int // Line number
lineStart int // Rune position of the last newline
}
type lexer struct {
fileName string // The file name being lexed, only used for errors
input string // The input string
source *ast.Source
pos position // Current position in input
prev position // Previous position in input
tokens tokens // The tokens that we've generated so far
// Information about the token we are working on right now
fodder fodder
tokenStart int
tokenStartLoc ast.Location
}
const lexEOF = -1
func makeLexer(fn string, input string) *lexer {
return &lexer{
fileName: fn,
input: input,
source: ast.BuildSource(input),
pos: position{byteNo: 0, lineNo: 1, lineStart: 0},
prev: position{byteNo: lexEOF, lineNo: 0, lineStart: 0},
tokenStartLoc: ast.Location{Line: 1, Column: 1},
}
}
// next returns the next rune in the input.
func (l *lexer) next() rune {
if int(l.pos.byteNo) >= len(l.input) {
l.prev = l.pos
return lexEOF
}
r, w := utf8.DecodeRuneInString(l.input[l.pos.byteNo:])
l.prev = l.pos
l.pos.byteNo += w
if r == '\n' {
l.pos.lineStart = l.pos.byteNo
l.pos.lineNo++
}
return r
}
func (l *lexer) acceptN(n int) {
for i := 0; i < n; i++ {
l.next()
}
}
// peek returns but does not consume the next rune in the input.
func (l *lexer) peek() rune {
r := l.next()
l.backup()
return r
}
// backup steps back one rune. Can only be called once per call of next.
func (l *lexer) backup() {
if l.prev.byteNo == lexEOF {
panic("backup called with no valid previous rune")
}
l.pos = l.prev
l.prev = position{byteNo: lexEOF}
}
func locationFromPosition(pos position) ast.Location {
return ast.Location{Line: pos.lineNo, Column: pos.byteNo - pos.lineStart + 1}
}
func (l *lexer) location() ast.Location {
return locationFromPosition(l.pos)
}
func (l *lexer) prevLocation() ast.Location {
if l.prev.byteNo == lexEOF {
panic("prevLocation called with no valid previous rune")
}
return locationFromPosition(l.prev)
}
// Reset the current working token start to the current cursor position. This
// may throw away some characters. This does not throw away any accumulated
// fodder.
func (l *lexer) resetTokenStart() {
l.tokenStart = l.pos.byteNo
l.tokenStartLoc = l.location()
}
func (l *lexer) emitFullToken(kind tokenKind, data, stringBlockIndent, stringBlockTermIndent string) {
l.tokens = append(l.tokens, token{
kind: kind,
fodder: l.fodder,
data: data,
stringBlockIndent: stringBlockIndent,
stringBlockTermIndent: stringBlockTermIndent,
loc: ast.MakeLocationRange(l.fileName, l.source, l.tokenStartLoc, l.location()),
})
l.fodder = fodder{}
}
func (l *lexer) emitToken(kind tokenKind) {
l.emitFullToken(kind, l.input[l.tokenStart:l.pos.byteNo], "", "")
l.resetTokenStart()
}
func (l *lexer) addWhitespaceFodder() {
fodderData := l.input[l.tokenStart:l.pos.byteNo]
if len(l.fodder) == 0 || l.fodder[len(l.fodder)-1].kind != fodderWhitespace {
l.fodder = append(l.fodder, fodderElement{kind: fodderWhitespace, data: fodderData})
} else {
l.fodder[len(l.fodder)-1].data += fodderData
}
l.resetTokenStart()
}
func (l *lexer) addCommentFodder(kind fodderKind) {
fodderData := l.input[l.tokenStart:l.pos.byteNo]
l.fodder = append(l.fodder, fodderElement{kind: kind, data: fodderData})
l.resetTokenStart()
}
func (l *lexer) addFodder(kind fodderKind, data string) {
l.fodder = append(l.fodder, fodderElement{kind: kind, data: data})
}
func (l *lexer) makeStaticErrorPoint(msg string, loc ast.Location) StaticError {
return StaticError{Msg: msg, Loc: ast.MakeLocationRange(l.fileName, l.source, loc, loc)}
}
// lexNumber will consume a number and emit a token. It is assumed
// that the next rune to be served by the lexer will be a leading digit.
func (l *lexer) lexNumber() error {
// This function should be understood with reference to the linked image:
// http://www.json.org/number.gif
// Note, we deviate from the json.org documentation as follows:
// There is no reason to lex negative numbers as atomic tokens, it is better to parse them
// as a unary operator combined with a numeric literal. This avoids x-1 being tokenized as
// <identifier> <number> instead of the intended <identifier> <binop> <number>.
type numLexState int
const (
numBegin numLexState = iota
numAfterZero
numAfterOneToNine
numAfterDot
numAfterDigit
numAfterE
numAfterExpSign
numAfterExpDigit
)
state := numBegin
outerLoop:
for true {
r := l.next()
switch state {
case numBegin:
switch {
case r == '0':
state = numAfterZero
case r >= '1' && r <= '9':
state = numAfterOneToNine
default:
// The caller should ensure the first rune is a digit.
panic("Couldn't lex number")
}
case numAfterZero:
switch r {
case '.':
state = numAfterDot
case 'e', 'E':
state = numAfterE
default:
break outerLoop
}
case numAfterOneToNine:
switch {
case r == '.':
state = numAfterDot
case r == 'e' || r == 'E':
state = numAfterE
case r >= '0' && r <= '9':
state = numAfterOneToNine
default:
break outerLoop
}
case numAfterDot:
switch {
case r >= '0' && r <= '9':
state = numAfterDigit
default:
return l.makeStaticErrorPoint(
fmt.Sprintf("Couldn't lex number, junk after decimal point: %v", strconv.QuoteRuneToASCII(r)),
l.prevLocation())
}
case numAfterDigit:
switch {
case r == 'e' || r == 'E':
state = numAfterE
case r >= '0' && r <= '9':
state = numAfterDigit
default:
break outerLoop
}
case numAfterE:
switch {
case r == '+' || r == '-':
state = numAfterExpSign
case r >= '0' && r <= '9':
state = numAfterExpDigit
default:
return l.makeStaticErrorPoint(
fmt.Sprintf("Couldn't lex number, junk after 'E': %v", strconv.QuoteRuneToASCII(r)),
l.prevLocation())
}
case numAfterExpSign:
if r >= '0' && r <= '9' {
state = numAfterExpDigit
} else {
return l.makeStaticErrorPoint(
fmt.Sprintf("Couldn't lex number, junk after exponent sign: %v", strconv.QuoteRuneToASCII(r)),
l.prevLocation())
}
case numAfterExpDigit:
if r >= '0' && r <= '9' {
state = numAfterExpDigit
} else {
break outerLoop
}
}
}
l.backup()
l.emitToken(tokenNumber)
return nil
}
// lexIdentifier will consume a identifer and emit a token. It is assumed
// that the next rune to be served by the lexer will be a leading digit. This
// may emit a keyword or an identifier.
func (l *lexer) lexIdentifier() {
r := l.next()
if !isIdentifierFirst(r) {
panic("Unexpected character in lexIdentifier")
}
for ; r != lexEOF; r = l.next() {
if !isIdentifier(r) {
break
}
}
l.backup()
switch l.input[l.tokenStart:l.pos.byteNo] {
case "assert":
l.emitToken(tokenAssert)
case "else":
l.emitToken(tokenElse)
case "error":
l.emitToken(tokenError)
case "false":
l.emitToken(tokenFalse)
case "for":
l.emitToken(tokenFor)
case "function":
l.emitToken(tokenFunction)
case "if":
l.emitToken(tokenIf)
case "import":
l.emitToken(tokenImport)
case "importstr":
l.emitToken(tokenImportStr)
case "in":
l.emitToken(tokenIn)
case "local":
l.emitToken(tokenLocal)
case "null":
l.emitToken(tokenNullLit)
case "self":
l.emitToken(tokenSelf)
case "super":
l.emitToken(tokenSuper)
case "tailstrict":
l.emitToken(tokenTailStrict)
case "then":
l.emitToken(tokenThen)
case "true":
l.emitToken(tokenTrue)
default:
// Not a keyword, assume it is an identifier
l.emitToken(tokenIdentifier)
}
}
// lexSymbol will lex a token that starts with a symbol. This could be a
// C or C++ comment, block quote or an operator. This function assumes that the next
// rune to be served by the lexer will be the first rune of the new token.
func (l *lexer) lexSymbol() error {
r := l.next()
// Single line C++ style comment
if r == '/' && l.peek() == '/' {
l.next()
l.resetTokenStart() // Throw out the leading //
for r = l.next(); r != lexEOF && r != '\n'; r = l.next() {
}
// Leave the '\n' in the lexer to be fodder for the next round
l.backup()
l.addCommentFodder(fodderCommentCpp)
return nil
}
if r == '/' && l.peek() == '*' {
commentStartLoc := l.tokenStartLoc
l.next() // consume the '*'
l.resetTokenStart() // Throw out the leading /*
for r = l.next(); ; r = l.next() {
if r == lexEOF {
return l.makeStaticErrorPoint("Multi-line comment has no terminating */",
commentStartLoc)
}
if r == '*' && l.peek() == '/' {
commentData := l.input[l.tokenStart : l.pos.byteNo-1] // Don't include trailing */
l.addFodder(fodderCommentC, commentData)
l.next() // Skip past '/'
l.resetTokenStart() // Start next token at this point
return nil
}
}
}
if r == '|' && strings.HasPrefix(l.input[l.pos.byteNo:], "||\n") {
commentStartLoc := l.tokenStartLoc
l.acceptN(3) // Skip "||\n"
var cb bytes.Buffer
// Skip leading blank lines
for r = l.next(); r == '\n'; r = l.next() {
cb.WriteRune(r)
}
l.backup()
numWhiteSpace := checkWhitespace(l.input[l.pos.byteNo:], l.input[l.pos.byteNo:])
stringBlockIndent := l.input[l.pos.byteNo : l.pos.byteNo+numWhiteSpace]
if numWhiteSpace == 0 {
return l.makeStaticErrorPoint("Text block's first line must start with whitespace",
commentStartLoc)
}
for {
if numWhiteSpace <= 0 {
panic("Unexpected value for numWhiteSpace")
}
l.acceptN(numWhiteSpace)
for r = l.next(); r != '\n'; r = l.next() {
if r == lexEOF {
return l.makeStaticErrorPoint("Unexpected EOF", commentStartLoc)
}
cb.WriteRune(r)
}
cb.WriteRune('\n')
// Skip any blank lines
for r = l.next(); r == '\n'; r = l.next() {
cb.WriteRune(r)
}
l.backup()
// Look at the next line
numWhiteSpace = checkWhitespace(stringBlockIndent, l.input[l.pos.byteNo:])
if numWhiteSpace == 0 {
// End of the text block
var stringBlockTermIndent string
for r = l.next(); r == ' ' || r == '\t'; r = l.next() {
stringBlockTermIndent += string(r)
}
l.backup()
if !strings.HasPrefix(l.input[l.pos.byteNo:], "|||") {
return l.makeStaticErrorPoint("Text block not terminated with |||", commentStartLoc)
}
l.acceptN(3) // Skip '|||'
l.emitFullToken(tokenStringBlock, cb.String(),
stringBlockIndent, stringBlockTermIndent)
l.resetTokenStart()
return nil
}
}
}
// Assume any string of symbols is a single operator.
for r = l.next(); isSymbol(r); r = l.next() {
// Not allowed // in operators
if r == '/' && strings.HasPrefix(l.input[l.pos.byteNo:], "/") {
break
}
// Not allowed /* in operators
if r == '/' && strings.HasPrefix(l.input[l.pos.byteNo:], "*") {
break
}
// Not allowed ||| in operators
if r == '|' && strings.HasPrefix(l.input[l.pos.byteNo:], "||") {
break
}
}
l.backup()
// Operators are not allowed to end with + - ~ ! unless they are one rune long.
// So, wind it back if we need to, but stop at the first rune.
// This relies on the hack that all operator symbols are ASCII and thus there is
// no need to treat this substring as general UTF-8.
for r = rune(l.input[l.pos.byteNo-1]); l.pos.byteNo > l.tokenStart+1; l.pos.byteNo-- {
switch r {
case '+', '-', '~', '!':
continue
}
break
}
if l.input[l.tokenStart:l.pos.byteNo] == "$" {
l.emitToken(tokenDollar)
} else {
l.emitToken(tokenOperator)
}
return nil
}
func Lex(fn string, input string) (tokens, error) {
l := makeLexer(fn, input)
var err error
for r := l.next(); r != lexEOF; r = l.next() {
switch r {
case ' ', '\t', '\r', '\n':
l.addWhitespaceFodder()
continue
case '{':
l.emitToken(tokenBraceL)
case '}':
l.emitToken(tokenBraceR)
case '[':
l.emitToken(tokenBracketL)
case ']':
l.emitToken(tokenBracketR)
case ',':
l.emitToken(tokenComma)
case '.':
l.emitToken(tokenDot)
case '(':
l.emitToken(tokenParenL)
case ')':
l.emitToken(tokenParenR)
case ';':
l.emitToken(tokenSemicolon)
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
l.backup()
err = l.lexNumber()
if err != nil {
return nil, err
}
// String literals
case '"':
stringStartLoc := l.prevLocation()
l.resetTokenStart() // Don't include the quotes in the token data
for r = l.next(); ; r = l.next() {
if r == lexEOF {
return nil, l.makeStaticErrorPoint("Unterminated String", stringStartLoc)
}
if r == '"' {
l.backup()
l.emitToken(tokenStringDouble)
_ = l.next()
l.resetTokenStart()
break
}
if r == '\\' && l.peek() != lexEOF {
r = l.next()
}
}
case '\'':
stringStartLoc := l.prevLocation()
l.resetTokenStart() // Don't include the quotes in the token data
for r = l.next(); ; r = l.next() {
if r == lexEOF {
return nil, l.makeStaticErrorPoint("Unterminated String", stringStartLoc)
}
if r == '\'' {
l.backup()
l.emitToken(tokenStringSingle)
r = l.next()
l.resetTokenStart()
break
}
if r == '\\' && l.peek() != lexEOF {
r = l.next()
}
}
case '@':
// Verbatim string literals.
// ' and " quoting is interpreted here, unlike non-verbatim strings
// where it is done later by jsonnet_string_unescape. This is OK
// in this case because no information is lost by resoving the
// repeated quote into a single quote, so we can go back to the
// original form in the formatter.
var data []rune
stringStartLoc := l.prevLocation()
quot := l.next()
var kind tokenKind
if quot == '"' {
kind = tokenVerbatimStringDouble
} else if quot == '\'' {
kind = tokenVerbatimStringSingle
} else {
return nil, l.makeStaticErrorPoint(
fmt.Sprintf("Couldn't lex verbatim string, junk after '@': %v", quot),
stringStartLoc,
)
}
for r = l.next(); ; r = l.next() {
if r == lexEOF {
return nil, l.makeStaticErrorPoint("Unterminated String", stringStartLoc)
} else if r == quot {
if l.peek() == quot {
l.next()
data = append(data, r)
} else {
l.emitFullToken(kind, string(data), "", "")
l.resetTokenStart()
break
}
} else {
data = append(data, r)
}
}
case '#':
l.resetTokenStart() // Throw out the leading #
for r = l.next(); r != lexEOF && r != '\n'; r = l.next() {
}
// Leave the '\n' in the lexer to be fodder for the next round
l.backup()
l.addCommentFodder(fodderCommentHash)
default:
if isIdentifierFirst(r) {
l.backup()
l.lexIdentifier()
} else if isSymbol(r) {
l.backup()
err = l.lexSymbol()
if err != nil {
return nil, err
}
} else {
return nil, l.makeStaticErrorPoint(
fmt.Sprintf("Could not lex the character %s", strconv.QuoteRuneToASCII(r)),
l.prevLocation())
}
}
}
// We are currently at the EOF. Emit a special token to capture any
// trailing fodder
l.emitToken(tokenEndOfFile)
return l.tokens, nil
}