/* Copyright 2017 Google Inc. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package jsonnet import ( "fmt" "github.com/google/go-jsonnet/ast" ) // value represents a concrete jsonnet value of a specific type. // Various operations on values are allowed, depending on their type. // All values are of course immutable. type value interface { aValue() // TODO(sbarzowski) consider representing each type as golang object typename() string } // potentialValue is something that may be evaluated to a concrete value. // The result of the evaluation may *NOT* depend on the current state // of the interpreter. The evaluation may fail. // // It can be used to represent lazy values (e.g. variables values in jsonnet // are not calculated before they are used). It is also a useful abstraction // in other cases like error handling. // // It may or may not require computation. // // Getting the value a second time may or may not result in additional evaluation. // // TODO(sbarzowski) perhaps call it just "Thunk"? type potentialValue interface { // fromWhere keeps the information from where the evaluation was requested. getValue(i *interpreter, fromWhere *TraceElement) (value, error) } // A set of variables with associated potentialValues. type bindingFrame map[ast.Identifier]potentialValue type valueBase struct{} func (v *valueBase) aValue() {} // Primitive values // ------------------------------------- type valueString struct { valueBase // We use rune slices instead of strings for quick indexing value []rune } func (s *valueString) index(e *evaluator, index int) (value, error) { if 0 <= index && index < s.length() { return makeValueString(string(s.value[index])), nil } return nil, e.Error(fmt.Sprintf("Index %d out of bounds, not within [0, %v)", index, s.length())) } func concatStrings(a, b *valueString) *valueString { result := make([]rune, 0, len(a.value)+len(b.value)) for _, r := range a.value { result = append(result, r) } for _, r := range b.value { result = append(result, r) } return &valueString{value: result} } func stringLessThan(a, b *valueString) bool { var length int if len(a.value) < len(b.value) { length = len(a.value) } else { length = len(b.value) } for i := 0; i < length; i++ { if a.value[i] != b.value[i] { return a.value[i] < b.value[i] } } return len(a.value) < len(b.value) } func stringEqual(a, b *valueString) bool { if len(a.value) != len(b.value) { return false } for i := 0; i < len(a.value); i++ { if a.value[i] != b.value[i] { return false } } return true } func (s *valueString) length() int { return len(s.value) } func (s *valueString) getString() string { return string(s.value) } func makeValueString(v string) *valueString { return &valueString{value: []rune(v)} } func (*valueString) typename() string { return "string" } type valueBoolean struct { valueBase value bool } func (*valueBoolean) typename() string { return "boolean" } func makeValueBoolean(v bool) *valueBoolean { return &valueBoolean{value: v} } func (b *valueBoolean) not() *valueBoolean { return makeValueBoolean(!b.value) } type valueNumber struct { valueBase value float64 } func (*valueNumber) typename() string { return "number" } func makeValueNumber(v float64) *valueNumber { return &valueNumber{value: v} } func intToValue(i int) *valueNumber { return makeValueNumber(float64(i)) } func int64ToValue(i int64) *valueNumber { return makeValueNumber(float64(i)) } // TODO(dcunnin): Maybe intern values null, true, and false? type valueNull struct { valueBase } func makeValueNull() *valueNull { return &valueNull{} } func (*valueNull) typename() string { return "null" } // ast.Array // ------------------------------------- type valueArray struct { valueBase elements []potentialValue } func (arr *valueArray) length() int { return len(arr.elements) } func makeValueArray(elements []potentialValue) *valueArray { // We don't want to keep a bigger array than necessary // so we create a new one with minimal capacity var arrayElems []potentialValue if len(elements) == cap(elements) { arrayElems = elements } else { arrayElems = make([]potentialValue, len(elements)) for i := range elements { arrayElems[i] = elements[i] } } return &valueArray{ elements: arrayElems, } } func concatArrays(a, b *valueArray) *valueArray { result := make([]potentialValue, 0, len(a.elements)+len(b.elements)) for _, r := range a.elements { result = append(result, r) } for _, r := range b.elements { result = append(result, r) } return &valueArray{elements: result} } func (*valueArray) typename() string { return "array" } // ast.Function // ------------------------------------- type valueFunction struct { valueBase ec evalCallable } // TODO(sbarzowski) better name? type evalCallable interface { EvalCall(args callArguments, e *evaluator) (value, error) Parameters() ast.Identifiers } func (f *valueFunction) call(args callArguments) potentialValue { return makeCallThunk(f.ec, args) } func (f *valueFunction) parameters() ast.Identifiers { return f.ec.Parameters() } func (f *valueFunction) typename() string { return "function" } type callArguments struct { positional []potentialValue // TODO named arguments } func args(xs ...potentialValue) callArguments { return callArguments{positional: xs} } // Objects // ------------------------------------- // Object is a value that allows indexing (taking a value of a field) // and combining through mixin inheritence (operator +). // // Accessing a field multiple times results in multiple evaluations. // TODO(sbarzowski) This can be very easily avoided and currently innocent looking // code may be in fact exponential. type valueObject interface { value inheritanceSize() int index(e *evaluator, field string) (value, error) } type selfBinding struct { // self is the lexically nearest object we are in, or nil. Note // that this is not the same as context, because we could be inside a function, // inside an object and then context would be the function, but self would still point // to the object. self value // superDepth is the "super" level of self. Sometimes, we look upwards in the // inheritance tree, e.g. via an explicit use of super, or because a given field // has been inherited. When evaluating a field from one of these super objects, // we need to bind self to the concrete object (so self must point // there) but uses of super should be resolved relative to the object whose // field we are evaluating. Thus, we keep a second field for that. This is // usually 0, unless we are evaluating a super object's field. // TODO(sbarzowski) provide some examples // TODO(sbarzowski) provide somewhere a complete explanation of the object model superDepth int } func makeUnboundSelfBinding() selfBinding { return selfBinding{ nil, 123456789, // poison value } } type valueObjectBase struct { valueBase } func (*valueObjectBase) typename() string { return "object" } // valueSimpleObject represents a flat object (no inheritance). // Note that it can be used as part of extended objects // in inheritance using operator +. // // Fields are late bound (to object), so they are not values or potentialValues. // This is important for inheritance, for example: // Let a = {x: 42} and b = {y: self.x}. Evaluating b.y is an error, // but (a+b).y evaluates to 42. type valueSimpleObject struct { valueObjectBase upValues bindingFrame fields valueSimpleObjectFieldMap asserts []ast.Node } func (o *valueSimpleObject) index(e *evaluator, field string) (value, error) { return objectIndex(e, selfBinding{self: o, superDepth: 0}, field) } func (*valueSimpleObject) inheritanceSize() int { return 1 } func makeValueSimpleObject(b bindingFrame, fields valueSimpleObjectFieldMap, asserts ast.Nodes) *valueSimpleObject { return &valueSimpleObject{ upValues: b, fields: fields, asserts: asserts, } } type valueSimpleObjectFieldMap map[string]valueSimpleObjectField // TODO(sbarzowski) this is not a value and the name suggests it is... // TODO(sbarzowski) better name? This is basically just a (hide, field) pair. type valueSimpleObjectField struct { hide ast.ObjectFieldHide field unboundField } // unboundField is a field that doesn't know yet in which object it is. type unboundField interface { bindToObject(sb selfBinding, origBinding bindingFrame) potentialValue } // valueExtendedObject represents an object created through inheritence (left + right). // We represent it as the pair of objects. This results in a tree-like structure. // Example: // (A + B) + C // // + // / \ // + C // / \ // A B // // It is possible to create an arbitrary binary tree. // Note however, that because + is associative the only thing that matters // is the order of leafs. // // This represenation allows us to implement "+" in O(1), // but requires going through the tree and trying subsequent leafs for field access. // // TODO(sbarzowski) consider other representations (this representation was chosen to stay close to C++ version) type valueExtendedObject struct { valueObjectBase left, right valueObject totalInheritanceSize int } func (o *valueExtendedObject) index(e *evaluator, field string) (value, error) { return objectIndex(e, selfBinding{self: o, superDepth: 0}, field) } func (o *valueExtendedObject) inheritanceSize() int { return o.totalInheritanceSize } func makeValueExtendedObject(left, right valueObject) *valueExtendedObject { return &valueExtendedObject{ left: left, right: right, totalInheritanceSize: left.inheritanceSize() + right.inheritanceSize(), } } // findField returns a field in object curr, with superDepth at least minSuperDepth // It also returns an associated bindingFrame and actual superDepth that the field // was found at. func findField(curr value, minSuperDepth int, f string) (*valueSimpleObjectField, bindingFrame, int) { switch curr := curr.(type) { case *valueExtendedObject: if curr.right.inheritanceSize() > minSuperDepth { field, frame, counter := findField(curr.right, minSuperDepth, f) if field != nil { return field, frame, counter } } field, frame, counter := findField(curr.left, minSuperDepth-curr.right.inheritanceSize(), f) return field, frame, counter + curr.right.inheritanceSize() case *valueSimpleObject: if minSuperDepth <= 0 { if field, ok := curr.fields[f]; ok { return &field, curr.upValues, 0 } } // TODO(sbarzowski) add handling of "Attempt to use super when there is no super class." return nil, nil, 0 default: panic(fmt.Sprintf("Unknown object type %#v", curr)) } } func superIndex(e *evaluator, currentSB selfBinding, field string) (value, error) { superSB := selfBinding{self: currentSB.self, superDepth: currentSB.superDepth + 1} return objectIndex(e, superSB, field) } func objectIndex(e *evaluator, sb selfBinding, fieldName string) (value, error) { field, upValues, foundAt := findField(sb.self, sb.superDepth, fieldName) if field == nil { return nil, e.Error(fmt.Sprintf("Field does not exist: %s", fieldName)) } fieldSelfBinding := selfBinding{self: sb.self, superDepth: foundAt} return e.evaluate(field.field.bindToObject(fieldSelfBinding, upValues)) } type fieldHideMap map[string]ast.ObjectFieldHide func objectFieldsVisibility(obj valueObject) fieldHideMap { r := make(fieldHideMap) switch obj := obj.(type) { case *valueExtendedObject: r = objectFieldsVisibility(obj.left) rightMap := objectFieldsVisibility(obj.right) for k, v := range rightMap { r[k] = v } return r case *valueSimpleObject: for fieldName, field := range obj.fields { r[fieldName] = field.hide } } return r } func objectFields(obj valueObject, manifesting bool) []string { var r []string for fieldName, hide := range objectFieldsVisibility(obj) { if !manifesting || hide != ast.ObjectFieldHidden { r = append(r, fieldName) } } return r }