Allocate resulting slice size instead of dynamically growing it

We know for sure how big the resulting slice will be, so instead of
having Go perform checks and reallocations whenever the slice grows
too small by using `append` we calculate the resulting size earlier
and directly index each element into the output slice. This result in
only two allocations all the time, no matter how big the resulting
slice will be. With it also come big performance improvements:

name                                        old time/op    new time/op    delta
ToOrderedSlice/1_unique_identifiers-8          173ns ±10%     150ns ± 4%  -13.16%  (p=0.000 n=10+9)
ToOrderedSlice/10_unique_identifiers-8        1.24µs ± 6%    0.51µs ± 5%  -58.95%  (p=0.000 n=9+9)
ToOrderedSlice/100_unique_identifiers-8       20.4µs ±20%     4.0µs ± 5%  -80.25%  (p=0.000 n=10+9)
ToOrderedSlice/1000_unique_identifiers-8       253µs ± 9%      40µs ± 5%  -84.19%  (p=0.000 n=10+10)
ToOrderedSlice/10000_unique_identifiers-8     3.44ms ± 9%    0.37ms ± 5%  -89.32%  (p=0.000 n=9+9)
ToOrderedSlice/100000_unique_identifiers-8    48.6ms ±13%     3.6ms ± 4%  -92.49%  (p=0.000 n=10+10)

name                                        old alloc/op   new alloc/op   delta
ToOrderedSlice/1_unique_identifiers-8          40.0B ± 0%     40.0B ± 0%     ~     (all equal)
ToOrderedSlice/10_unique_identifiers-8          520B ± 0%      184B ± 0%  -64.62%  (p=0.000 n=10+10)
ToOrderedSlice/100_unique_identifiers-8       4.10kB ± 0%    1.82kB ± 0%  -55.75%  (p=0.000 n=10+10)
ToOrderedSlice/1000_unique_identifiers-8      32.8kB ± 0%    16.4kB ± 0%  -49.95%  (p=0.000 n=10+10)
ToOrderedSlice/10000_unique_identifiers-8      826kB ± 0%     164kB ± 0%  -80.16%  (p=0.000 n=10+10)
ToOrderedSlice/100000_unique_identifiers-8    9.25MB ± 0%    1.61MB ± 0%  -82.64%  (p=0.000 n=10+10)

name                                        old allocs/op  new allocs/op  delta
ToOrderedSlice/1_unique_identifiers-8           2.00 ± 0%      2.00 ± 0%     ~     (all equal)
ToOrderedSlice/10_unique_identifiers-8          6.00 ± 0%      2.00 ± 0%  -66.67%  (p=0.000 n=10+10)
ToOrderedSlice/100_unique_identifiers-8         9.00 ± 0%      2.00 ± 0%  -77.78%  (p=0.000 n=10+10)
ToOrderedSlice/1000_unique_identifiers-8        12.0 ± 0%       2.0 ± 0%  -83.33%  (p=0.000 n=10+10)
ToOrderedSlice/10000_unique_identifiers-8       21.0 ± 0%       2.0 ± 0%  -90.48%  (p=0.000 n=10+10)
ToOrderedSlice/100000_unique_identifiers-8      31.0 ± 0%       2.0 ± 0%  -93.55%  (p=0.000 n=10+10)

For ToSLice we use the same changes except the sort operation. In this
case the results are even more impressive: allocations are stable at
just 1 per operation, regardless of set size, and performance is
orders of magnitude faster:

name                                 old time/op    new time/op    delta
ToSlice/1_unique_identifiers-8         83.0ns ± 1%    92.4ns ± 0%    +11.37%  (p=0.000 n=9+8)
ToSlice/10_unique_identifiers-8         295ns ± 4%     749ns ± 3%   +154.21%  (p=0.000 n=10+10)
ToSlice/100_unique_identifiers-8       2.33µs ± 2%    4.28µs ± 2%    +83.62%  (p=0.000 n=9+8)
ToSlice/1000_unique_identifiers-8      25.4µs ±10%    34.7µs ± 1%    +36.51%  (p=0.000 n=10+10)
ToSlice/10000_unique_identifiers-8      215µs ± 2%     543µs ± 1%   +152.15%  (p=0.000 n=9+10)
ToSlice/100000_unique_identifiers-8    2.05ms ± 2%    7.17ms ± 1%   +249.53%  (p=0.000 n=9+9)

name                                 old alloc/op   new alloc/op   delta
ToSlice/1_unique_identifiers-8          16.0B ± 0%     16.0B ± 0%       ~     (all equal)
ToSlice/10_unique_identifiers-8          160B ± 0%      496B ± 0%   +210.00%  (p=0.000 n=10+10)
ToSlice/100_unique_identifiers-8       1.79kB ± 0%    4.08kB ± 0%   +127.68%  (p=0.000 n=10+10)
ToSlice/1000_unique_identifiers-8      16.4kB ± 0%    32.8kB ± 0%    +99.90%  (p=0.000 n=10+10)
ToSlice/10000_unique_identifiers-8      164kB ± 0%     826kB ± 0%   +404.12%  (p=0.000 n=8+10)
ToSlice/100000_unique_identifiers-8    1.61MB ± 0%    9.25MB ± 0%   +475.93%  (p=0.000 n=10+10)

name                                 old allocs/op  new allocs/op  delta
ToSlice/1_unique_identifiers-8           1.00 ± 0%      1.00 ± 0%       ~     (all equal)
ToSlice/10_unique_identifiers-8          1.00 ± 0%      5.00 ± 0%   +400.00%  (p=0.000 n=10+10)
ToSlice/100_unique_identifiers-8         1.00 ± 0%      8.00 ± 0%   +700.00%  (p=0.000 n=10+10)
ToSlice/1000_unique_identifiers-8        1.00 ± 0%     11.00 ± 0%  +1000.00%  (p=0.000 n=10+10)
ToSlice/10000_unique_identifiers-8       1.00 ± 0%     20.00 ± 0%  +1900.00%  (p=0.000 n=10+10)
ToSlice/100000_unique_identifiers-8      1.00 ± 0%     30.00 ± 0%  +2900.00%  (p=0.000 n=10+10)

Signed-off-by: Leandro López <leandro.lopez@grafana.com>
This commit is contained in:
Leandro López 2021-03-23 14:14:59 -03:00 committed by Stanisław Barzowski
parent 067dc391aa
commit eeca44cd27
2 changed files with 8 additions and 4 deletions

View File

@ -22,9 +22,11 @@ func NewIdentifierSet(a ...Identifier) IdentifierSet {
// ToSlice returns the elements of the current set as a slice
func (set IdentifierSet) ToSlice() []Identifier {
var s []Identifier
s := make([]Identifier, len(set), len(set))
j := 0
for v := range set {
s = append(s, v)
s[j] = v
j++
}
return s
}

View File

@ -29,9 +29,11 @@ func (i IdentifierSet) AddIdentifiers(idents Identifiers) {
// ToOrderedSlice returns the elements of the current set as an ordered slice.
func (i IdentifierSet) ToOrderedSlice() []Identifier {
var s []Identifier
s := make([]Identifier, len(i), len(i))
j := 0
for v := range i {
s = append(s, v)
s[j] = v
j++
}
sort.Sort(identifierSorter(s))
return s