mirror of
https://github.com/miekg/dns.git
synced 2025-08-11 20:16:58 +02:00
This will allow RRSIG.Sign to use generic crypto.Signer implementations. This is a interface breaking change, even if the required changes are most likely just type asserions from crypto.PrivateKey to the underlying type or crypto.Signer.
660 lines
16 KiB
Go
660 lines
16 KiB
Go
package dns
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto"
|
|
"crypto/dsa"
|
|
"crypto/ecdsa"
|
|
"crypto/elliptic"
|
|
_ "crypto/md5"
|
|
"crypto/rand"
|
|
"crypto/rsa"
|
|
_ "crypto/sha1"
|
|
_ "crypto/sha256"
|
|
_ "crypto/sha512"
|
|
"encoding/asn1"
|
|
"encoding/hex"
|
|
"math/big"
|
|
"sort"
|
|
"strings"
|
|
"time"
|
|
)
|
|
|
|
// DNSSEC encryption algorithm codes.
|
|
const (
|
|
_ uint8 = iota
|
|
RSAMD5
|
|
DH
|
|
DSA
|
|
_ // Skip 4, RFC 6725, section 2.1
|
|
RSASHA1
|
|
DSANSEC3SHA1
|
|
RSASHA1NSEC3SHA1
|
|
RSASHA256
|
|
_ // Skip 9, RFC 6725, section 2.1
|
|
RSASHA512
|
|
_ // Skip 11, RFC 6725, section 2.1
|
|
ECCGOST
|
|
ECDSAP256SHA256
|
|
ECDSAP384SHA384
|
|
INDIRECT uint8 = 252
|
|
PRIVATEDNS uint8 = 253 // Private (experimental keys)
|
|
PRIVATEOID uint8 = 254
|
|
)
|
|
|
|
// Map for algorithm names.
|
|
var AlgorithmToString = map[uint8]string{
|
|
RSAMD5: "RSAMD5",
|
|
DH: "DH",
|
|
DSA: "DSA",
|
|
RSASHA1: "RSASHA1",
|
|
DSANSEC3SHA1: "DSA-NSEC3-SHA1",
|
|
RSASHA1NSEC3SHA1: "RSASHA1-NSEC3-SHA1",
|
|
RSASHA256: "RSASHA256",
|
|
RSASHA512: "RSASHA512",
|
|
ECCGOST: "ECC-GOST",
|
|
ECDSAP256SHA256: "ECDSAP256SHA256",
|
|
ECDSAP384SHA384: "ECDSAP384SHA384",
|
|
INDIRECT: "INDIRECT",
|
|
PRIVATEDNS: "PRIVATEDNS",
|
|
PRIVATEOID: "PRIVATEOID",
|
|
}
|
|
|
|
// Map of algorithm strings.
|
|
var StringToAlgorithm = reverseInt8(AlgorithmToString)
|
|
|
|
// Map of algorithm crypto hashes.
|
|
var AlgorithmToHash = map[uint8]crypto.Hash{
|
|
RSAMD5: crypto.MD5, // Deprecated in RFC 6725
|
|
RSASHA1: crypto.SHA1,
|
|
RSASHA1NSEC3SHA1: crypto.SHA1,
|
|
RSASHA256: crypto.SHA256,
|
|
ECDSAP256SHA256: crypto.SHA256,
|
|
ECDSAP384SHA384: crypto.SHA384,
|
|
RSASHA512: crypto.SHA512,
|
|
}
|
|
|
|
// DNSSEC hashing algorithm codes.
|
|
const (
|
|
_ uint8 = iota
|
|
SHA1 // RFC 4034
|
|
SHA256 // RFC 4509
|
|
GOST94 // RFC 5933
|
|
SHA384 // Experimental
|
|
SHA512 // Experimental
|
|
)
|
|
|
|
// Map for hash names.
|
|
var HashToString = map[uint8]string{
|
|
SHA1: "SHA1",
|
|
SHA256: "SHA256",
|
|
GOST94: "GOST94",
|
|
SHA384: "SHA384",
|
|
SHA512: "SHA512",
|
|
}
|
|
|
|
// Map of hash strings.
|
|
var StringToHash = reverseInt8(HashToString)
|
|
|
|
// DNSKEY flag values.
|
|
const (
|
|
SEP = 1
|
|
REVOKE = 1 << 7
|
|
ZONE = 1 << 8
|
|
)
|
|
|
|
// The RRSIG needs to be converted to wireformat with some of
|
|
// the rdata (the signature) missing. Use this struct to easy
|
|
// the conversion (and re-use the pack/unpack functions).
|
|
type rrsigWireFmt struct {
|
|
TypeCovered uint16
|
|
Algorithm uint8
|
|
Labels uint8
|
|
OrigTtl uint32
|
|
Expiration uint32
|
|
Inception uint32
|
|
KeyTag uint16
|
|
SignerName string `dns:"domain-name"`
|
|
/* No Signature */
|
|
}
|
|
|
|
// Used for converting DNSKEY's rdata to wirefmt.
|
|
type dnskeyWireFmt struct {
|
|
Flags uint16
|
|
Protocol uint8
|
|
Algorithm uint8
|
|
PublicKey string `dns:"base64"`
|
|
/* Nothing is left out */
|
|
}
|
|
|
|
func divRoundUp(a, b int) int {
|
|
return (a + b - 1) / b
|
|
}
|
|
|
|
// KeyTag calculates the keytag (or key-id) of the DNSKEY.
|
|
func (k *DNSKEY) KeyTag() uint16 {
|
|
if k == nil {
|
|
return 0
|
|
}
|
|
var keytag int
|
|
switch k.Algorithm {
|
|
case RSAMD5:
|
|
// Look at the bottom two bytes of the modules, which the last
|
|
// item in the pubkey. We could do this faster by looking directly
|
|
// at the base64 values. But I'm lazy.
|
|
modulus, _ := fromBase64([]byte(k.PublicKey))
|
|
if len(modulus) > 1 {
|
|
x, _ := unpackUint16(modulus, len(modulus)-2)
|
|
keytag = int(x)
|
|
}
|
|
default:
|
|
keywire := new(dnskeyWireFmt)
|
|
keywire.Flags = k.Flags
|
|
keywire.Protocol = k.Protocol
|
|
keywire.Algorithm = k.Algorithm
|
|
keywire.PublicKey = k.PublicKey
|
|
wire := make([]byte, DefaultMsgSize)
|
|
n, err := PackStruct(keywire, wire, 0)
|
|
if err != nil {
|
|
return 0
|
|
}
|
|
wire = wire[:n]
|
|
for i, v := range wire {
|
|
if i&1 != 0 {
|
|
keytag += int(v) // must be larger than uint32
|
|
} else {
|
|
keytag += int(v) << 8
|
|
}
|
|
}
|
|
keytag += (keytag >> 16) & 0xFFFF
|
|
keytag &= 0xFFFF
|
|
}
|
|
return uint16(keytag)
|
|
}
|
|
|
|
// ToDS converts a DNSKEY record to a DS record.
|
|
func (k *DNSKEY) ToDS(h uint8) *DS {
|
|
if k == nil {
|
|
return nil
|
|
}
|
|
ds := new(DS)
|
|
ds.Hdr.Name = k.Hdr.Name
|
|
ds.Hdr.Class = k.Hdr.Class
|
|
ds.Hdr.Rrtype = TypeDS
|
|
ds.Hdr.Ttl = k.Hdr.Ttl
|
|
ds.Algorithm = k.Algorithm
|
|
ds.DigestType = h
|
|
ds.KeyTag = k.KeyTag()
|
|
|
|
keywire := new(dnskeyWireFmt)
|
|
keywire.Flags = k.Flags
|
|
keywire.Protocol = k.Protocol
|
|
keywire.Algorithm = k.Algorithm
|
|
keywire.PublicKey = k.PublicKey
|
|
wire := make([]byte, DefaultMsgSize)
|
|
n, err := PackStruct(keywire, wire, 0)
|
|
if err != nil {
|
|
return nil
|
|
}
|
|
wire = wire[:n]
|
|
|
|
owner := make([]byte, 255)
|
|
off, err1 := PackDomainName(strings.ToLower(k.Hdr.Name), owner, 0, nil, false)
|
|
if err1 != nil {
|
|
return nil
|
|
}
|
|
owner = owner[:off]
|
|
// RFC4034:
|
|
// digest = digest_algorithm( DNSKEY owner name | DNSKEY RDATA);
|
|
// "|" denotes concatenation
|
|
// DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key.
|
|
|
|
// digest buffer
|
|
digest := append(owner, wire...) // another copy
|
|
|
|
var hash crypto.Hash
|
|
switch h {
|
|
case SHA1:
|
|
hash = crypto.SHA1
|
|
case SHA256:
|
|
hash = crypto.SHA256
|
|
case SHA384:
|
|
hash = crypto.SHA384
|
|
case SHA512:
|
|
hash = crypto.SHA512
|
|
default:
|
|
return nil
|
|
}
|
|
|
|
s := hash.New()
|
|
s.Write(digest)
|
|
ds.Digest = hex.EncodeToString(s.Sum(nil))
|
|
return ds
|
|
}
|
|
|
|
// ToCDNSKEY converts a DNSKEY record to a CDNSKEY record.
|
|
func (k *DNSKEY) ToCDNSKEY() *CDNSKEY {
|
|
c := &CDNSKEY{DNSKEY: *k}
|
|
c.Hdr = *k.Hdr.copyHeader()
|
|
c.Hdr.Rrtype = TypeCDNSKEY
|
|
return c
|
|
}
|
|
|
|
// ToCDS converts a DS record to a CDS record.
|
|
func (d *DS) ToCDS() *CDS {
|
|
c := &CDS{DS: *d}
|
|
c.Hdr = *d.Hdr.copyHeader()
|
|
c.Hdr.Rrtype = TypeCDS
|
|
return c
|
|
}
|
|
|
|
// Sign signs an RRSet. The signature needs to be filled in with
|
|
// the values: Inception, Expiration, KeyTag, SignerName and Algorithm.
|
|
// The rest is copied from the RRset. Sign returns true when the signing went OK,
|
|
// otherwise false.
|
|
// There is no check if RRSet is a proper (RFC 2181) RRSet.
|
|
// If OrigTTL is non zero, it is used as-is, otherwise the TTL of the RRset
|
|
// is used as the OrigTTL.
|
|
func (rr *RRSIG) Sign(k crypto.Signer, rrset []RR) error {
|
|
if k == nil {
|
|
return ErrPrivKey
|
|
}
|
|
// s.Inception and s.Expiration may be 0 (rollover etc.), the rest must be set
|
|
if rr.KeyTag == 0 || len(rr.SignerName) == 0 || rr.Algorithm == 0 {
|
|
return ErrKey
|
|
}
|
|
|
|
rr.Hdr.Rrtype = TypeRRSIG
|
|
rr.Hdr.Name = rrset[0].Header().Name
|
|
rr.Hdr.Class = rrset[0].Header().Class
|
|
if rr.OrigTtl == 0 { // If set don't override
|
|
rr.OrigTtl = rrset[0].Header().Ttl
|
|
}
|
|
rr.TypeCovered = rrset[0].Header().Rrtype
|
|
rr.Labels = uint8(CountLabel(rrset[0].Header().Name))
|
|
|
|
if strings.HasPrefix(rrset[0].Header().Name, "*") {
|
|
rr.Labels-- // wildcard, remove from label count
|
|
}
|
|
|
|
sigwire := new(rrsigWireFmt)
|
|
sigwire.TypeCovered = rr.TypeCovered
|
|
sigwire.Algorithm = rr.Algorithm
|
|
sigwire.Labels = rr.Labels
|
|
sigwire.OrigTtl = rr.OrigTtl
|
|
sigwire.Expiration = rr.Expiration
|
|
sigwire.Inception = rr.Inception
|
|
sigwire.KeyTag = rr.KeyTag
|
|
// For signing, lowercase this name
|
|
sigwire.SignerName = strings.ToLower(rr.SignerName)
|
|
|
|
// Create the desired binary blob
|
|
signdata := make([]byte, DefaultMsgSize)
|
|
n, err := PackStruct(sigwire, signdata, 0)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
signdata = signdata[:n]
|
|
wire, err := rawSignatureData(rrset, rr)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
signdata = append(signdata, wire...)
|
|
|
|
hash, ok := AlgorithmToHash[rr.Algorithm]
|
|
if !ok {
|
|
return ErrAlg
|
|
}
|
|
|
|
h := hash.New()
|
|
h.Write(signdata)
|
|
|
|
signature, err := sign(k, h.Sum(nil), hash, rr.Algorithm)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
rr.Signature = toBase64(signature)
|
|
|
|
return nil
|
|
}
|
|
|
|
func sign(k crypto.Signer, hashed []byte, hash crypto.Hash, alg uint8) ([]byte, error) {
|
|
signature, err := k.Sign(rand.Reader, hashed, hash)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
switch alg {
|
|
case RSASHA1, RSASHA1NSEC3SHA1, RSASHA256, RSASHA512:
|
|
return signature, nil
|
|
|
|
case ECDSAP256SHA256, ECDSAP384SHA384:
|
|
ecdsaSignature := &struct {
|
|
R, S *big.Int
|
|
}{}
|
|
if _, err := asn1.Unmarshal(signature, ecdsaSignature); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var intlen int
|
|
switch alg {
|
|
case ECDSAP256SHA256:
|
|
intlen = 32
|
|
case ECDSAP384SHA384:
|
|
intlen = 48
|
|
}
|
|
|
|
signature := intToBytes(ecdsaSignature.R, intlen)
|
|
signature = append(signature, intToBytes(ecdsaSignature.S, intlen)...)
|
|
return signature, nil
|
|
|
|
// There is no defined interface for what a DSA backed crypto.Signer returns
|
|
case DSA, DSANSEC3SHA1:
|
|
// t := divRoundUp(divRoundUp(p.PublicKey.Y.BitLen(), 8)-64, 8)
|
|
// signature := []byte{byte(t)}
|
|
// signature = append(signature, intToBytes(r1, 20)...)
|
|
// signature = append(signature, intToBytes(s1, 20)...)
|
|
// rr.Signature = signature
|
|
}
|
|
|
|
return nil, ErrAlg
|
|
}
|
|
|
|
// Verify validates an RRSet with the signature and key. This is only the
|
|
// cryptographic test, the signature validity period must be checked separately.
|
|
// This function copies the rdata of some RRs (to lowercase domain names) for the validation to work.
|
|
func (rr *RRSIG) Verify(k *DNSKEY, rrset []RR) error {
|
|
// First the easy checks
|
|
if !IsRRset(rrset) {
|
|
return ErrRRset
|
|
}
|
|
if rr.KeyTag != k.KeyTag() {
|
|
return ErrKey
|
|
}
|
|
if rr.Hdr.Class != k.Hdr.Class {
|
|
return ErrKey
|
|
}
|
|
if rr.Algorithm != k.Algorithm {
|
|
return ErrKey
|
|
}
|
|
if strings.ToLower(rr.SignerName) != strings.ToLower(k.Hdr.Name) {
|
|
return ErrKey
|
|
}
|
|
if k.Protocol != 3 {
|
|
return ErrKey
|
|
}
|
|
|
|
// IsRRset checked that we have at least one RR and that the RRs in
|
|
// the set have consistent type, class, and name. Also check that type and
|
|
// class matches the RRSIG record.
|
|
if rrset[0].Header().Class != rr.Hdr.Class {
|
|
return ErrRRset
|
|
}
|
|
if rrset[0].Header().Rrtype != rr.TypeCovered {
|
|
return ErrRRset
|
|
}
|
|
|
|
// RFC 4035 5.3.2. Reconstructing the Signed Data
|
|
// Copy the sig, except the rrsig data
|
|
sigwire := new(rrsigWireFmt)
|
|
sigwire.TypeCovered = rr.TypeCovered
|
|
sigwire.Algorithm = rr.Algorithm
|
|
sigwire.Labels = rr.Labels
|
|
sigwire.OrigTtl = rr.OrigTtl
|
|
sigwire.Expiration = rr.Expiration
|
|
sigwire.Inception = rr.Inception
|
|
sigwire.KeyTag = rr.KeyTag
|
|
sigwire.SignerName = strings.ToLower(rr.SignerName)
|
|
// Create the desired binary blob
|
|
signeddata := make([]byte, DefaultMsgSize)
|
|
n, err := PackStruct(sigwire, signeddata, 0)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
signeddata = signeddata[:n]
|
|
wire, err := rawSignatureData(rrset, rr)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
signeddata = append(signeddata, wire...)
|
|
|
|
sigbuf := rr.sigBuf() // Get the binary signature data
|
|
if rr.Algorithm == PRIVATEDNS { // PRIVATEOID
|
|
// TODO(mg)
|
|
// remove the domain name and assume its our
|
|
}
|
|
|
|
hash, ok := AlgorithmToHash[rr.Algorithm]
|
|
if !ok {
|
|
return ErrAlg
|
|
}
|
|
|
|
switch rr.Algorithm {
|
|
case RSASHA1, RSASHA1NSEC3SHA1, RSASHA256, RSASHA512, RSAMD5:
|
|
// TODO(mg): this can be done quicker, ie. cache the pubkey data somewhere??
|
|
pubkey := k.publicKeyRSA() // Get the key
|
|
if pubkey == nil {
|
|
return ErrKey
|
|
}
|
|
|
|
h := hash.New()
|
|
h.Write(signeddata)
|
|
return rsa.VerifyPKCS1v15(pubkey, hash, h.Sum(nil), sigbuf)
|
|
|
|
case ECDSAP256SHA256, ECDSAP384SHA384:
|
|
pubkey := k.publicKeyECDSA()
|
|
if pubkey == nil {
|
|
return ErrKey
|
|
}
|
|
|
|
// Split sigbuf into the r and s coordinates
|
|
r := new(big.Int).SetBytes(sigbuf[:len(sigbuf)/2])
|
|
s := new(big.Int).SetBytes(sigbuf[len(sigbuf)/2:])
|
|
|
|
h := hash.New()
|
|
h.Write(signeddata)
|
|
if ecdsa.Verify(pubkey, h.Sum(nil), r, s) {
|
|
return nil
|
|
}
|
|
return ErrSig
|
|
|
|
default:
|
|
return ErrAlg
|
|
}
|
|
}
|
|
|
|
// ValidityPeriod uses RFC1982 serial arithmetic to calculate
|
|
// if a signature period is valid. If t is the zero time, the
|
|
// current time is taken other t is. Returns true if the signature
|
|
// is valid at the given time, otherwise returns false.
|
|
func (rr *RRSIG) ValidityPeriod(t time.Time) bool {
|
|
var utc int64
|
|
if t.IsZero() {
|
|
utc = time.Now().UTC().Unix()
|
|
} else {
|
|
utc = t.UTC().Unix()
|
|
}
|
|
modi := (int64(rr.Inception) - utc) / year68
|
|
mode := (int64(rr.Expiration) - utc) / year68
|
|
ti := int64(rr.Inception) + (modi * year68)
|
|
te := int64(rr.Expiration) + (mode * year68)
|
|
return ti <= utc && utc <= te
|
|
}
|
|
|
|
// Return the signatures base64 encodedig sigdata as a byte slice.
|
|
func (rr *RRSIG) sigBuf() []byte {
|
|
sigbuf, err := fromBase64([]byte(rr.Signature))
|
|
if err != nil {
|
|
return nil
|
|
}
|
|
return sigbuf
|
|
}
|
|
|
|
// publicKeyRSA returns the RSA public key from a DNSKEY record.
|
|
func (k *DNSKEY) publicKeyRSA() *rsa.PublicKey {
|
|
keybuf, err := fromBase64([]byte(k.PublicKey))
|
|
if err != nil {
|
|
return nil
|
|
}
|
|
|
|
// RFC 2537/3110, section 2. RSA Public KEY Resource Records
|
|
// Length is in the 0th byte, unless its zero, then it
|
|
// it in bytes 1 and 2 and its a 16 bit number
|
|
explen := uint16(keybuf[0])
|
|
keyoff := 1
|
|
if explen == 0 {
|
|
explen = uint16(keybuf[1])<<8 | uint16(keybuf[2])
|
|
keyoff = 3
|
|
}
|
|
pubkey := new(rsa.PublicKey)
|
|
|
|
pubkey.N = big.NewInt(0)
|
|
shift := uint64((explen - 1) * 8)
|
|
expo := uint64(0)
|
|
for i := int(explen - 1); i > 0; i-- {
|
|
expo += uint64(keybuf[keyoff+i]) << shift
|
|
shift -= 8
|
|
}
|
|
// Remainder
|
|
expo += uint64(keybuf[keyoff])
|
|
if expo > 2<<31 {
|
|
// Larger expo than supported.
|
|
// println("dns: F5 primes (or larger) are not supported")
|
|
return nil
|
|
}
|
|
pubkey.E = int(expo)
|
|
|
|
pubkey.N.SetBytes(keybuf[keyoff+int(explen):])
|
|
return pubkey
|
|
}
|
|
|
|
// publicKeyECDSA returns the Curve public key from the DNSKEY record.
|
|
func (k *DNSKEY) publicKeyECDSA() *ecdsa.PublicKey {
|
|
keybuf, err := fromBase64([]byte(k.PublicKey))
|
|
if err != nil {
|
|
return nil
|
|
}
|
|
pubkey := new(ecdsa.PublicKey)
|
|
switch k.Algorithm {
|
|
case ECDSAP256SHA256:
|
|
pubkey.Curve = elliptic.P256()
|
|
if len(keybuf) != 64 {
|
|
// wrongly encoded key
|
|
return nil
|
|
}
|
|
case ECDSAP384SHA384:
|
|
pubkey.Curve = elliptic.P384()
|
|
if len(keybuf) != 96 {
|
|
// Wrongly encoded key
|
|
return nil
|
|
}
|
|
}
|
|
pubkey.X = big.NewInt(0)
|
|
pubkey.X.SetBytes(keybuf[:len(keybuf)/2])
|
|
pubkey.Y = big.NewInt(0)
|
|
pubkey.Y.SetBytes(keybuf[len(keybuf)/2:])
|
|
return pubkey
|
|
}
|
|
|
|
func (k *DNSKEY) publicKeyDSA() *dsa.PublicKey {
|
|
keybuf, err := fromBase64([]byte(k.PublicKey))
|
|
if err != nil {
|
|
return nil
|
|
}
|
|
if len(keybuf) < 22 {
|
|
return nil
|
|
}
|
|
t, keybuf := int(keybuf[0]), keybuf[1:]
|
|
size := 64 + t*8
|
|
q, keybuf := keybuf[:20], keybuf[20:]
|
|
if len(keybuf) != 3*size {
|
|
return nil
|
|
}
|
|
p, keybuf := keybuf[:size], keybuf[size:]
|
|
g, y := keybuf[:size], keybuf[size:]
|
|
pubkey := new(dsa.PublicKey)
|
|
pubkey.Parameters.Q = big.NewInt(0).SetBytes(q)
|
|
pubkey.Parameters.P = big.NewInt(0).SetBytes(p)
|
|
pubkey.Parameters.G = big.NewInt(0).SetBytes(g)
|
|
pubkey.Y = big.NewInt(0).SetBytes(y)
|
|
return pubkey
|
|
}
|
|
|
|
type wireSlice [][]byte
|
|
|
|
func (p wireSlice) Len() int { return len(p) }
|
|
func (p wireSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
|
func (p wireSlice) Less(i, j int) bool {
|
|
_, ioff, _ := UnpackDomainName(p[i], 0)
|
|
_, joff, _ := UnpackDomainName(p[j], 0)
|
|
return bytes.Compare(p[i][ioff+10:], p[j][joff+10:]) < 0
|
|
}
|
|
|
|
// Return the raw signature data.
|
|
func rawSignatureData(rrset []RR, s *RRSIG) (buf []byte, err error) {
|
|
wires := make(wireSlice, len(rrset))
|
|
for i, r := range rrset {
|
|
r1 := r.copy()
|
|
r1.Header().Ttl = s.OrigTtl
|
|
labels := SplitDomainName(r1.Header().Name)
|
|
// 6.2. Canonical RR Form. (4) - wildcards
|
|
if len(labels) > int(s.Labels) {
|
|
// Wildcard
|
|
r1.Header().Name = "*." + strings.Join(labels[len(labels)-int(s.Labels):], ".") + "."
|
|
}
|
|
// RFC 4034: 6.2. Canonical RR Form. (2) - domain name to lowercase
|
|
r1.Header().Name = strings.ToLower(r1.Header().Name)
|
|
// 6.2. Canonical RR Form. (3) - domain rdata to lowercase.
|
|
// NS, MD, MF, CNAME, SOA, MB, MG, MR, PTR,
|
|
// HINFO, MINFO, MX, RP, AFSDB, RT, SIG, PX, NXT, NAPTR, KX,
|
|
// SRV, DNAME, A6
|
|
switch x := r1.(type) {
|
|
case *NS:
|
|
x.Ns = strings.ToLower(x.Ns)
|
|
case *CNAME:
|
|
x.Target = strings.ToLower(x.Target)
|
|
case *SOA:
|
|
x.Ns = strings.ToLower(x.Ns)
|
|
x.Mbox = strings.ToLower(x.Mbox)
|
|
case *MB:
|
|
x.Mb = strings.ToLower(x.Mb)
|
|
case *MG:
|
|
x.Mg = strings.ToLower(x.Mg)
|
|
case *MR:
|
|
x.Mr = strings.ToLower(x.Mr)
|
|
case *PTR:
|
|
x.Ptr = strings.ToLower(x.Ptr)
|
|
case *MINFO:
|
|
x.Rmail = strings.ToLower(x.Rmail)
|
|
x.Email = strings.ToLower(x.Email)
|
|
case *MX:
|
|
x.Mx = strings.ToLower(x.Mx)
|
|
case *NAPTR:
|
|
x.Replacement = strings.ToLower(x.Replacement)
|
|
case *KX:
|
|
x.Exchanger = strings.ToLower(x.Exchanger)
|
|
case *SRV:
|
|
x.Target = strings.ToLower(x.Target)
|
|
case *DNAME:
|
|
x.Target = strings.ToLower(x.Target)
|
|
}
|
|
// 6.2. Canonical RR Form. (5) - origTTL
|
|
wire := make([]byte, r1.len()+1) // +1 to be safe(r)
|
|
off, err1 := PackRR(r1, wire, 0, nil, false)
|
|
if err1 != nil {
|
|
return nil, err1
|
|
}
|
|
wire = wire[:off]
|
|
wires[i] = wire
|
|
}
|
|
sort.Sort(wires)
|
|
for i, wire := range wires {
|
|
if i > 0 && bytes.Equal(wire, wires[i-1]) {
|
|
continue
|
|
}
|
|
buf = append(buf, wire...)
|
|
}
|
|
return buf, nil
|
|
}
|