arm-trusted-firmware/services/std_svc/spm/sp_setup.c
Antonio Nino Diaz 07f3f63028 SPM: Shorten names of types and functions
The current internal names are too long, which makes it hard to write
code as many lines overflow the limit and need to be split, which may
not help the reader.

Change-Id: I072bdc8f3dd125255063ffa7f02500e5228fc9a1
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
2018-05-23 13:50:18 +01:00

301 lines
9.0 KiB
C

/*
* Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <common_def.h>
#include <context.h>
#include <context_mgmt.h>
#include <debug.h>
#include <platform_def.h>
#include <platform.h>
#include <secure_partition.h>
#include <string.h>
#include <xlat_tables_v2.h>
#include "spm_private.h"
#include "spm_shim_private.h"
/* Setup context of the Secure Partition */
void spm_sp_setup(sp_context_t *sp_ctx)
{
cpu_context_t *ctx = &(sp_ctx->cpu_ctx);
/*
* Initialize CPU context
* ----------------------
*/
entry_point_info_t ep_info = {0};
SET_PARAM_HEAD(&ep_info, PARAM_EP, VERSION_1, SECURE | EP_ST_ENABLE);
ep_info.pc = BL32_BASE;
ep_info.spsr = SPSR_64(MODE_EL0, MODE_SP_EL0, DISABLE_ALL_EXCEPTIONS);
cm_setup_context(ctx, &ep_info);
/*
* General-Purpose registers
* -------------------------
*/
/*
* X0: Virtual address of a buffer shared between EL3 and Secure EL0.
* The buffer will be mapped in the Secure EL1 translation regime
* with Normal IS WBWA attributes and RO data and Execute Never
* instruction access permissions.
*
* X1: Size of the buffer in bytes
*
* X2: cookie value (Implementation Defined)
*
* X3: cookie value (Implementation Defined)
*
* X4 to X30 = 0 (already done by cm_init_my_context())
*/
write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_X0, PLAT_SPM_BUF_BASE);
write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_X1, PLAT_SPM_BUF_SIZE);
write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_X2, PLAT_SPM_COOKIE_0);
write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_X3, PLAT_SPM_COOKIE_1);
/*
* SP_EL0: A non-zero value will indicate to the SP that the SPM has
* initialized the stack pointer for the current CPU through
* implementation defined means. The value will be 0 otherwise.
*/
write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_SP_EL0,
PLAT_SP_IMAGE_STACK_BASE + PLAT_SP_IMAGE_STACK_PCPU_SIZE);
/*
* Setup translation tables
* ------------------------
*/
#if ENABLE_ASSERTIONS
/* Get max granularity supported by the platform. */
u_register_t id_aa64mmfr0_el1 = read_id_aa64mmfr0_el1();
int tgran64_supported =
((id_aa64mmfr0_el1 >> ID_AA64MMFR0_EL1_TGRAN64_SHIFT) &
ID_AA64MMFR0_EL1_TGRAN64_MASK) ==
ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED;
int tgran16_supported =
((id_aa64mmfr0_el1 >> ID_AA64MMFR0_EL1_TGRAN16_SHIFT) &
ID_AA64MMFR0_EL1_TGRAN16_MASK) ==
ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED;
int tgran4_supported =
((id_aa64mmfr0_el1 >> ID_AA64MMFR0_EL1_TGRAN4_SHIFT) &
ID_AA64MMFR0_EL1_TGRAN4_MASK) ==
ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED;
uintptr_t max_granule_size;
if (tgran64_supported) {
max_granule_size = 64 * 1024;
} else if (tgran16_supported) {
max_granule_size = 16 * 1024;
} else {
assert(tgran4_supported);
max_granule_size = 4 * 1024;
}
VERBOSE("Max translation granule supported: %lu KiB\n",
max_granule_size / 1024);
uintptr_t max_granule_size_mask = max_granule_size - 1;
/* Base must be aligned to the max granularity */
assert((ARM_SP_IMAGE_NS_BUF_BASE & max_granule_size_mask) == 0);
/* Size must be a multiple of the max granularity */
assert((ARM_SP_IMAGE_NS_BUF_SIZE & max_granule_size_mask) == 0);
#endif /* ENABLE_ASSERTIONS */
/* This region contains the exception vectors used at S-EL1. */
const mmap_region_t sel1_exception_vectors =
MAP_REGION_FLAT(SPM_SHIM_EXCEPTIONS_START,
SPM_SHIM_EXCEPTIONS_SIZE,
MT_CODE | MT_SECURE | MT_PRIVILEGED);
mmap_add_region_ctx(sp_ctx->xlat_ctx_handle,
&sel1_exception_vectors);
mmap_add_ctx(sp_ctx->xlat_ctx_handle,
plat_get_secure_partition_mmap(NULL));
init_xlat_tables_ctx(sp_ctx->xlat_ctx_handle);
/*
* MMU-related registers
* ---------------------
*/
/* Set attributes in the right indices of the MAIR */
u_register_t mair_el1 =
MAIR_ATTR_SET(ATTR_DEVICE, ATTR_DEVICE_INDEX) |
MAIR_ATTR_SET(ATTR_IWBWA_OWBWA_NTR, ATTR_IWBWA_OWBWA_NTR_INDEX) |
MAIR_ATTR_SET(ATTR_NON_CACHEABLE, ATTR_NON_CACHEABLE_INDEX);
write_ctx_reg(get_sysregs_ctx(ctx), CTX_MAIR_EL1, mair_el1);
/* Setup TCR_EL1. */
u_register_t tcr_ps_bits = tcr_physical_addr_size_bits(PLAT_PHY_ADDR_SPACE_SIZE);
u_register_t tcr_el1 =
/* Size of region addressed by TTBR0_EL1 = 2^(64-T0SZ) bytes. */
(64 - __builtin_ctzl(PLAT_VIRT_ADDR_SPACE_SIZE)) |
/* Inner and outer WBWA, shareable. */
TCR_SH_INNER_SHAREABLE | TCR_RGN_OUTER_WBA | TCR_RGN_INNER_WBA |
/* Set the granularity to 4KB. */
TCR_TG0_4K |
/* Limit Intermediate Physical Address Size. */
tcr_ps_bits << TCR_EL1_IPS_SHIFT |
/* Disable translations using TBBR1_EL1. */
TCR_EPD1_BIT
/* The remaining fields related to TBBR1_EL1 are left as zero. */
;
tcr_el1 &= ~(
/* Enable translations using TBBR0_EL1 */
TCR_EPD0_BIT
);
write_ctx_reg(get_sysregs_ctx(ctx), CTX_TCR_EL1, tcr_el1);
/* Setup SCTLR_EL1 */
u_register_t sctlr_el1 = read_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1);
sctlr_el1 |=
/*SCTLR_EL1_RES1 |*/
/* Don't trap DC CVAU, DC CIVAC, DC CVAC, DC CVAP, or IC IVAU */
SCTLR_UCI_BIT |
/* RW regions at xlat regime EL1&0 are forced to be XN. */
SCTLR_WXN_BIT |
/* Don't trap to EL1 execution of WFI or WFE at EL0. */
SCTLR_NTWI_BIT | SCTLR_NTWE_BIT |
/* Don't trap to EL1 accesses to CTR_EL0 from EL0. */
SCTLR_UCT_BIT |
/* Don't trap to EL1 execution of DZ ZVA at EL0. */
SCTLR_DZE_BIT |
/* Enable SP Alignment check for EL0 */
SCTLR_SA0_BIT |
/* Allow cacheable data and instr. accesses to normal memory. */
SCTLR_C_BIT | SCTLR_I_BIT |
/* Alignment fault checking enabled when at EL1 and EL0. */
SCTLR_A_BIT |
/* Enable MMU. */
SCTLR_M_BIT
;
sctlr_el1 &= ~(
/* Explicit data accesses at EL0 are little-endian. */
SCTLR_E0E_BIT |
/* Accesses to DAIF from EL0 are trapped to EL1. */
SCTLR_UMA_BIT
);
write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_el1);
uint64_t *xlat_base =
((xlat_ctx_t *)sp_ctx->xlat_ctx_handle)->base_table;
/* Point TTBR0_EL1 at the tables of the context created for the SP. */
write_ctx_reg(get_sysregs_ctx(ctx), CTX_TTBR0_EL1,
(u_register_t)xlat_base);
/*
* Setup other system registers
* ----------------------------
*/
/* Shim Exception Vector Base Address */
write_ctx_reg(get_sysregs_ctx(ctx), CTX_VBAR_EL1,
SPM_SHIM_EXCEPTIONS_PTR);
/*
* FPEN: Allow the Secure Partition to access FP/SIMD registers.
* Note that SPM will not do any saving/restoring of these registers on
* behalf of the SP. This falls under the SP's responsibility.
* TTA: Enable access to trace registers.
* ZEN (v8.2): Trap SVE instructions and access to SVE registers.
*/
write_ctx_reg(get_sysregs_ctx(ctx), CTX_CPACR_EL1,
CPACR_EL1_FPEN(CPACR_EL1_FP_TRAP_NONE));
/*
* Prepare information in buffer shared between EL3 and S-EL0
* ----------------------------------------------------------
*/
void *shared_buf_ptr = (void *) PLAT_SPM_BUF_BASE;
/* Copy the boot information into the shared buffer with the SP. */
assert((uintptr_t)shared_buf_ptr + sizeof(secure_partition_boot_info_t)
<= (PLAT_SPM_BUF_BASE + PLAT_SPM_BUF_SIZE));
assert(PLAT_SPM_BUF_BASE <= (UINTPTR_MAX - PLAT_SPM_BUF_SIZE + 1));
const secure_partition_boot_info_t *sp_boot_info =
plat_get_secure_partition_boot_info(NULL);
assert(sp_boot_info != NULL);
memcpy((void *) shared_buf_ptr, (const void *) sp_boot_info,
sizeof(secure_partition_boot_info_t));
/* Pointer to the MP information from the platform port. */
secure_partition_mp_info_t *sp_mp_info =
((secure_partition_boot_info_t *) shared_buf_ptr)->mp_info;
assert(sp_mp_info != NULL);
/*
* Point the shared buffer MP information pointer to where the info will
* be populated, just after the boot info.
*/
((secure_partition_boot_info_t *) shared_buf_ptr)->mp_info =
(secure_partition_mp_info_t *) ((uintptr_t)shared_buf_ptr
+ sizeof(secure_partition_boot_info_t));
/*
* Update the shared buffer pointer to where the MP information for the
* payload will be populated
*/
shared_buf_ptr = ((secure_partition_boot_info_t *) shared_buf_ptr)->mp_info;
/*
* Copy the cpu information into the shared buffer area after the boot
* information.
*/
assert(sp_boot_info->num_cpus <= PLATFORM_CORE_COUNT);
assert((uintptr_t)shared_buf_ptr
<= (PLAT_SPM_BUF_BASE + PLAT_SPM_BUF_SIZE -
(sp_boot_info->num_cpus * sizeof(*sp_mp_info))));
memcpy(shared_buf_ptr, (const void *) sp_mp_info,
sp_boot_info->num_cpus * sizeof(*sp_mp_info));
/*
* Calculate the linear indices of cores in boot information for the
* secure partition and flag the primary CPU
*/
sp_mp_info = (secure_partition_mp_info_t *) shared_buf_ptr;
for (unsigned int index = 0; index < sp_boot_info->num_cpus; index++) {
u_register_t mpidr = sp_mp_info[index].mpidr;
sp_mp_info[index].linear_id = plat_core_pos_by_mpidr(mpidr);
if (plat_my_core_pos() == sp_mp_info[index].linear_id)
sp_mp_info[index].flags |= MP_INFO_FLAG_PRIMARY_CPU;
}
}