mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-08-15 00:47:02 +02:00
C99 standard: "What constitutes an access to an object that has volatile-qualified type is implementation-defined". GCC is not considering the cast to void of volatile structures as an access and so is not actually issuing reads. Clang does read those structures by copying them on the stack, which in this case creates an overflow because of their large size. This patch removes the cast to void and instead uses the USED attribute to tell the compiler to retain the static variables. Change-Id: I952b5056e3f6e91841e7ef9558434352710ab80d Signed-off-by: Ambroise Vincent <ambroise.vincent@arm.com> Zelalem Aweke <zelalem.aweke@arm.com>
247 lines
8.1 KiB
C
247 lines
8.1 KiB
C
/*
|
|
* Copyright (c) 2015-2019, ARM Limited and Contributors. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <platform_def.h>
|
|
|
|
#include <common/interrupt_props.h>
|
|
#include <drivers/arm/gicv3.h>
|
|
#include <lib/utils.h>
|
|
#include <plat/arm/common/plat_arm.h>
|
|
#include <plat/common/platform.h>
|
|
|
|
/******************************************************************************
|
|
* The following functions are defined as weak to allow a platform to override
|
|
* the way the GICv3 driver is initialised and used.
|
|
*****************************************************************************/
|
|
#pragma weak plat_arm_gic_driver_init
|
|
#pragma weak plat_arm_gic_init
|
|
#pragma weak plat_arm_gic_cpuif_enable
|
|
#pragma weak plat_arm_gic_cpuif_disable
|
|
#pragma weak plat_arm_gic_pcpu_init
|
|
#pragma weak plat_arm_gic_redistif_on
|
|
#pragma weak plat_arm_gic_redistif_off
|
|
|
|
/* The GICv3 driver only needs to be initialized in EL3 */
|
|
static uintptr_t rdistif_base_addrs[PLATFORM_CORE_COUNT];
|
|
|
|
/* Default GICR base address to be used for GICR probe. */
|
|
static const uintptr_t gicr_base_addrs[2] = {
|
|
PLAT_ARM_GICR_BASE, /* GICR Base address of the primary CPU */
|
|
0U /* Zero Termination */
|
|
};
|
|
|
|
/* List of zero terminated GICR frame addresses which CPUs will probe */
|
|
static const uintptr_t *gicr_frames = gicr_base_addrs;
|
|
|
|
static const interrupt_prop_t arm_interrupt_props[] = {
|
|
PLAT_ARM_G1S_IRQ_PROPS(INTR_GROUP1S),
|
|
PLAT_ARM_G0_IRQ_PROPS(INTR_GROUP0)
|
|
};
|
|
|
|
/*
|
|
* We save and restore the GICv3 context on system suspend. Allocate the
|
|
* data in the designated EL3 Secure carve-out memory. The `used` attribute
|
|
* is used to prevent the compiler from removing the gicv3 contexts.
|
|
*/
|
|
static gicv3_redist_ctx_t rdist_ctx __section("arm_el3_tzc_dram") __used;
|
|
static gicv3_dist_ctx_t dist_ctx __section("arm_el3_tzc_dram") __used;
|
|
|
|
/* Define accessor function to get reference to the GICv3 context */
|
|
DEFINE_LOAD_SYM_ADDR(rdist_ctx)
|
|
DEFINE_LOAD_SYM_ADDR(dist_ctx)
|
|
|
|
/*
|
|
* MPIDR hashing function for translating MPIDRs read from GICR_TYPER register
|
|
* to core position.
|
|
*
|
|
* Calculating core position is dependent on MPIDR_EL1.MT bit. However, affinity
|
|
* values read from GICR_TYPER don't have an MT field. To reuse the same
|
|
* translation used for CPUs, we insert MT bit read from the PE's MPIDR into
|
|
* that read from GICR_TYPER.
|
|
*
|
|
* Assumptions:
|
|
*
|
|
* - All CPUs implemented in the system have MPIDR_EL1.MT bit set;
|
|
* - No CPUs implemented in the system use affinity level 3.
|
|
*/
|
|
static unsigned int arm_gicv3_mpidr_hash(u_register_t mpidr)
|
|
{
|
|
mpidr |= (read_mpidr_el1() & MPIDR_MT_MASK);
|
|
return plat_arm_calc_core_pos(mpidr);
|
|
}
|
|
|
|
static const gicv3_driver_data_t arm_gic_data __unused = {
|
|
.gicd_base = PLAT_ARM_GICD_BASE,
|
|
.gicr_base = 0U,
|
|
.interrupt_props = arm_interrupt_props,
|
|
.interrupt_props_num = ARRAY_SIZE(arm_interrupt_props),
|
|
.rdistif_num = PLATFORM_CORE_COUNT,
|
|
.rdistif_base_addrs = rdistif_base_addrs,
|
|
.mpidr_to_core_pos = arm_gicv3_mpidr_hash
|
|
};
|
|
|
|
/*
|
|
* By default, gicr_frames will be pointing to gicr_base_addrs. If
|
|
* the platform supports a non-contiguous GICR frames (GICR frames located
|
|
* at uneven offset), plat_arm_override_gicr_frames function can be used by
|
|
* such platform to override the gicr_frames.
|
|
*/
|
|
void plat_arm_override_gicr_frames(const uintptr_t *plat_gicr_frames)
|
|
{
|
|
assert(plat_gicr_frames != NULL);
|
|
gicr_frames = plat_gicr_frames;
|
|
}
|
|
|
|
void __init plat_arm_gic_driver_init(void)
|
|
{
|
|
/*
|
|
* The GICv3 driver is initialized in EL3 and does not need
|
|
* to be initialized again in SEL1. This is because the S-EL1
|
|
* can use GIC system registers to manage interrupts and does
|
|
* not need GIC interface base addresses to be configured.
|
|
*/
|
|
#if (!defined(__aarch64__) && defined(IMAGE_BL32)) || \
|
|
(defined(__aarch64__) && defined(IMAGE_BL31))
|
|
gicv3_driver_init(&arm_gic_data);
|
|
|
|
if (gicv3_rdistif_probe(gicr_base_addrs[0]) == -1) {
|
|
ERROR("No GICR base frame found for Primary CPU\n");
|
|
panic();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/******************************************************************************
|
|
* ARM common helper to initialize the GIC. Only invoked by BL31
|
|
*****************************************************************************/
|
|
void __init plat_arm_gic_init(void)
|
|
{
|
|
gicv3_distif_init();
|
|
gicv3_rdistif_init(plat_my_core_pos());
|
|
gicv3_cpuif_enable(plat_my_core_pos());
|
|
}
|
|
|
|
/******************************************************************************
|
|
* ARM common helper to enable the GIC CPU interface
|
|
*****************************************************************************/
|
|
void plat_arm_gic_cpuif_enable(void)
|
|
{
|
|
gicv3_cpuif_enable(plat_my_core_pos());
|
|
}
|
|
|
|
/******************************************************************************
|
|
* ARM common helper to disable the GIC CPU interface
|
|
*****************************************************************************/
|
|
void plat_arm_gic_cpuif_disable(void)
|
|
{
|
|
gicv3_cpuif_disable(plat_my_core_pos());
|
|
}
|
|
|
|
/******************************************************************************
|
|
* ARM common helper function to iterate over all GICR frames and discover the
|
|
* corresponding per-cpu redistributor frame as well as initialize the
|
|
* corresponding interface in GICv3.
|
|
*****************************************************************************/
|
|
void plat_arm_gic_pcpu_init(void)
|
|
{
|
|
int result;
|
|
const uintptr_t *plat_gicr_frames = gicr_frames;
|
|
|
|
do {
|
|
result = gicv3_rdistif_probe(*plat_gicr_frames);
|
|
|
|
/* If the probe is successful, no need to proceed further */
|
|
if (result == 0)
|
|
break;
|
|
|
|
plat_gicr_frames++;
|
|
} while (*plat_gicr_frames != 0U);
|
|
|
|
if (result == -1) {
|
|
ERROR("No GICR base frame found for CPU 0x%lx\n", read_mpidr());
|
|
panic();
|
|
}
|
|
gicv3_rdistif_init(plat_my_core_pos());
|
|
}
|
|
|
|
/******************************************************************************
|
|
* ARM common helpers to power GIC redistributor interface
|
|
*****************************************************************************/
|
|
void plat_arm_gic_redistif_on(void)
|
|
{
|
|
gicv3_rdistif_on(plat_my_core_pos());
|
|
}
|
|
|
|
void plat_arm_gic_redistif_off(void)
|
|
{
|
|
gicv3_rdistif_off(plat_my_core_pos());
|
|
}
|
|
|
|
/******************************************************************************
|
|
* ARM common helper to save & restore the GICv3 on resume from system suspend
|
|
*****************************************************************************/
|
|
void plat_arm_gic_save(void)
|
|
{
|
|
gicv3_redist_ctx_t * const rdist_context =
|
|
(gicv3_redist_ctx_t *)LOAD_ADDR_OF(rdist_ctx);
|
|
gicv3_dist_ctx_t * const dist_context =
|
|
(gicv3_dist_ctx_t *)LOAD_ADDR_OF(dist_ctx);
|
|
|
|
/*
|
|
* If an ITS is available, save its context before
|
|
* the Redistributor using:
|
|
* gicv3_its_save_disable(gits_base, &its_ctx[i])
|
|
* Additionally, an implementation-defined sequence may
|
|
* be required to save the whole ITS state.
|
|
*/
|
|
|
|
/*
|
|
* Save the GIC Redistributors and ITS contexts before the
|
|
* Distributor context. As we only handle SYSTEM SUSPEND API,
|
|
* we only need to save the context of the CPU that is issuing
|
|
* the SYSTEM SUSPEND call, i.e. the current CPU.
|
|
*/
|
|
gicv3_rdistif_save(plat_my_core_pos(), rdist_context);
|
|
|
|
/* Save the GIC Distributor context */
|
|
gicv3_distif_save(dist_context);
|
|
|
|
/*
|
|
* From here, all the components of the GIC can be safely powered down
|
|
* as long as there is an alternate way to handle wakeup interrupt
|
|
* sources.
|
|
*/
|
|
}
|
|
|
|
void plat_arm_gic_resume(void)
|
|
{
|
|
const gicv3_redist_ctx_t *rdist_context =
|
|
(gicv3_redist_ctx_t *)LOAD_ADDR_OF(rdist_ctx);
|
|
const gicv3_dist_ctx_t *dist_context =
|
|
(gicv3_dist_ctx_t *)LOAD_ADDR_OF(dist_ctx);
|
|
|
|
/* Restore the GIC Distributor context */
|
|
gicv3_distif_init_restore(dist_context);
|
|
|
|
/*
|
|
* Restore the GIC Redistributor and ITS contexts after the
|
|
* Distributor context. As we only handle SYSTEM SUSPEND API,
|
|
* we only need to restore the context of the CPU that issued
|
|
* the SYSTEM SUSPEND call.
|
|
*/
|
|
gicv3_rdistif_init_restore(plat_my_core_pos(), rdist_context);
|
|
|
|
/*
|
|
* If an ITS is available, restore its context after
|
|
* the Redistributor using:
|
|
* gicv3_its_restore(gits_base, &its_ctx[i])
|
|
* An implementation-defined sequence may be required to
|
|
* restore the whole ITS state. The ITS must also be
|
|
* re-enabled after this sequence has been executed.
|
|
*/
|
|
}
|