arm-trusted-firmware/plat/meson/gxbb/gxbb_bl31_setup.c
Antonio Nino Diaz 09d40e0e08 Sanitise includes across codebase
Enforce full include path for includes. Deprecate old paths.

The following folders inside include/lib have been left unchanged:

- include/lib/cpus/${ARCH}
- include/lib/el3_runtime/${ARCH}

The reason for this change is that having a global namespace for
includes isn't a good idea. It defeats one of the advantages of having
folders and it introduces problems that are sometimes subtle (because
you may not know the header you are actually including if there are two
of them).

For example, this patch had to be created because two headers were
called the same way: e0ea0928d5 ("Fix gpio includes of mt8173 platform
to avoid collision."). More recently, this patch has had similar
problems: 46f9b2c3a2 ("drivers: add tzc380 support").

This problem was introduced in commit 4ecca33988 ("Move include and
source files to logical locations"). At that time, there weren't too
many headers so it wasn't a real issue. However, time has shown that
this creates problems.

Platforms that want to preserve the way they include headers may add the
removed paths to PLAT_INCLUDES, but this is discouraged.

Change-Id: I39dc53ed98f9e297a5966e723d1936d6ccf2fc8f
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
2019-01-04 10:43:17 +00:00

147 lines
4.6 KiB
C

/*
* Copyright (c) 2018, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <platform_def.h>
#include <common/bl_common.h>
#include <common/interrupt_props.h>
#include <drivers/arm/gicv2.h>
#include <lib/xlat_tables/xlat_mmu_helpers.h>
#include <plat/common/platform.h>
#include "gxbb_private.h"
/*
* Placeholder variables for copying the arguments that have been passed to
* BL31 from BL2.
*/
static entry_point_info_t bl33_image_ep_info;
/*******************************************************************************
* Return a pointer to the 'entry_point_info' structure of the next image for
* the security state specified. BL33 corresponds to the non-secure image type
* while BL32 corresponds to the secure image type. A NULL pointer is returned
* if the image does not exist.
******************************************************************************/
entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type)
{
entry_point_info_t *next_image_info;
assert(type == NON_SECURE);
next_image_info = &bl33_image_ep_info;
/* None of the images can have 0x0 as the entrypoint. */
if (next_image_info->pc != 0U) {
return next_image_info;
} else {
return NULL;
}
}
/*******************************************************************************
* Perform any BL31 early platform setup. Here is an opportunity to copy
* parameters passed by the calling EL (S-EL1 in BL2 & S-EL3 in BL1) before
* they are lost (potentially). This needs to be done before the MMU is
* initialized so that the memory layout can be used while creating page
* tables. BL2 has flushed this information to memory, so we are guaranteed
* to pick up good data.
******************************************************************************/
struct gxbb_bl31_param {
param_header_t h;
image_info_t *bl31_image_info;
entry_point_info_t *bl32_ep_info;
image_info_t *bl32_image_info;
entry_point_info_t *bl33_ep_info;
image_info_t *bl33_image_info;
};
void bl31_early_platform_setup2(u_register_t arg0, u_register_t arg1,
u_register_t arg2, u_register_t arg3)
{
struct gxbb_bl31_param *from_bl2;
/* Initialize the console to provide early debug support */
gxbb_console_init();
/*
* In debug builds, we pass a special value in 'arg1' to verify platform
* parameters from BL2 to BL31. In release builds it's not used.
*/
assert(arg1 == GXBB_BL31_PLAT_PARAM_VAL);
/* Check that params passed from BL2 are not NULL. */
from_bl2 = (struct gxbb_bl31_param *) arg0;
/* Check params passed from BL2 are not NULL. */
assert(from_bl2 != NULL);
assert(from_bl2->h.type == PARAM_BL31);
assert(from_bl2->h.version >= VERSION_1);
/*
* Copy BL33 entry point information. It is stored in Secure RAM, in
* BL2's address space.
*/
bl33_image_ep_info = *from_bl2->bl33_ep_info;
if (bl33_image_ep_info.pc == 0U) {
ERROR("BL31: BL33 entrypoint not obtained from BL2\n");
panic();
}
}
void bl31_plat_arch_setup(void)
{
gxbb_setup_page_tables();
enable_mmu_el3(0);
}
/*******************************************************************************
* GICv2 driver setup information
******************************************************************************/
static const interrupt_prop_t gxbb_interrupt_props[] = {
INTR_PROP_DESC(IRQ_SEC_PHY_TIMER, GIC_HIGHEST_SEC_PRIORITY,
GICV2_INTR_GROUP0, GIC_INTR_CFG_LEVEL),
INTR_PROP_DESC(IRQ_SEC_SGI_0, GIC_HIGHEST_SEC_PRIORITY,
GICV2_INTR_GROUP0, GIC_INTR_CFG_LEVEL),
INTR_PROP_DESC(IRQ_SEC_SGI_1, GIC_HIGHEST_SEC_PRIORITY,
GICV2_INTR_GROUP0, GIC_INTR_CFG_LEVEL),
INTR_PROP_DESC(IRQ_SEC_SGI_2, GIC_HIGHEST_SEC_PRIORITY,
GICV2_INTR_GROUP0, GIC_INTR_CFG_LEVEL),
INTR_PROP_DESC(IRQ_SEC_SGI_3, GIC_HIGHEST_SEC_PRIORITY,
GICV2_INTR_GROUP0, GIC_INTR_CFG_LEVEL),
INTR_PROP_DESC(IRQ_SEC_SGI_4, GIC_HIGHEST_SEC_PRIORITY,
GICV2_INTR_GROUP0, GIC_INTR_CFG_LEVEL),
INTR_PROP_DESC(IRQ_SEC_SGI_5, GIC_HIGHEST_SEC_PRIORITY,
GICV2_INTR_GROUP0, GIC_INTR_CFG_LEVEL),
INTR_PROP_DESC(IRQ_SEC_SGI_6, GIC_HIGHEST_SEC_PRIORITY,
GICV2_INTR_GROUP0, GIC_INTR_CFG_LEVEL),
INTR_PROP_DESC(IRQ_SEC_SGI_7, GIC_HIGHEST_SEC_PRIORITY,
GICV2_INTR_GROUP0, GIC_INTR_CFG_LEVEL),
};
static const gicv2_driver_data_t gxbb_gic_data = {
.gicd_base = GXBB_GICD_BASE,
.gicc_base = GXBB_GICC_BASE,
.interrupt_props = gxbb_interrupt_props,
.interrupt_props_num = ARRAY_SIZE(gxbb_interrupt_props),
};
void bl31_platform_setup(void)
{
mhu_secure_init();
gicv2_driver_init(&gxbb_gic_data);
gicv2_distif_init();
gicv2_pcpu_distif_init();
gicv2_cpuif_enable();
gxbb_thermal_unknown();
}