mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-08-17 01:47:00 +02:00
The legacy GIC driver assumes that the SGIs and PPIs are Group0 during initialization. This is true if the driver is the first one to initialize the GIC hardware after reset. But in some cases, earlier BL stages could have already initialized the GIC hardware which means that SGI and PPI configuration are not the expected reset values causing assertion failure in `gicd_set_ipriorityr()`. This patch explicitly resets the SGI and PPI to Group0 prior to their initialization in the driver. The same patch is not done in the GICv2-only driver because unlike in the legacy driver, `gicd_set_ipriorityr()` of GICv2 driver doesn't enforce this policy and the appropriate group is set irrespective of the initial value. Fixes ARM-software/tf-issues#396 Change-Id: I521d35caa37470ce542c796c2ba99716e4763105
460 lines
15 KiB
C
460 lines
15 KiB
C
/*
|
|
* Copyright (c) 2014-2016, ARM Limited and Contributors. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* Neither the name of ARM nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific
|
|
* prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <arch.h>
|
|
#include <arch_helpers.h>
|
|
#include <arm_gic.h>
|
|
#include <assert.h>
|
|
#include <bl_common.h>
|
|
#include <debug.h>
|
|
#include <gic_v2.h>
|
|
#include <gic_v3.h>
|
|
#include <interrupt_mgmt.h>
|
|
#include <platform.h>
|
|
#include <stdint.h>
|
|
|
|
/* Value used to initialize Non-Secure IRQ priorities four at a time */
|
|
#define GICD_IPRIORITYR_DEF_VAL \
|
|
(GIC_HIGHEST_NS_PRIORITY | \
|
|
(GIC_HIGHEST_NS_PRIORITY << 8) | \
|
|
(GIC_HIGHEST_NS_PRIORITY << 16) | \
|
|
(GIC_HIGHEST_NS_PRIORITY << 24))
|
|
|
|
static uintptr_t g_gicc_base;
|
|
static uintptr_t g_gicd_base;
|
|
static uintptr_t g_gicr_base;
|
|
static const unsigned int *g_irq_sec_ptr;
|
|
static unsigned int g_num_irqs;
|
|
|
|
|
|
/*******************************************************************************
|
|
* This function does some minimal GICv3 configuration. The Firmware itself does
|
|
* not fully support GICv3 at this time and relies on GICv2 emulation as
|
|
* provided by GICv3. This function allows software (like Linux) in later stages
|
|
* to use full GICv3 features.
|
|
******************************************************************************/
|
|
static void gicv3_cpuif_setup(void)
|
|
{
|
|
unsigned int val;
|
|
uintptr_t base;
|
|
|
|
/*
|
|
* When CPUs come out of reset they have their GICR_WAKER.ProcessorSleep
|
|
* bit set. In order to allow interrupts to get routed to the CPU we
|
|
* need to clear this bit if set and wait for GICR_WAKER.ChildrenAsleep
|
|
* to clear (GICv3 Architecture specification 5.4.23).
|
|
* GICR_WAKER is NOT banked per CPU, compute the correct base address
|
|
* per CPU.
|
|
*/
|
|
assert(g_gicr_base);
|
|
base = gicv3_get_rdist(g_gicr_base, read_mpidr());
|
|
if (base == (uintptr_t)NULL) {
|
|
/* No re-distributor base address. This interface cannot be
|
|
* configured.
|
|
*/
|
|
panic();
|
|
}
|
|
|
|
val = gicr_read_waker(base);
|
|
|
|
val &= ~WAKER_PS;
|
|
gicr_write_waker(base, val);
|
|
dsb();
|
|
|
|
/* We need to wait for ChildrenAsleep to clear. */
|
|
val = gicr_read_waker(base);
|
|
while (val & WAKER_CA)
|
|
val = gicr_read_waker(base);
|
|
|
|
val = read_icc_sre_el3();
|
|
write_icc_sre_el3(val | ICC_SRE_EN | ICC_SRE_SRE);
|
|
isb();
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function does some minimal GICv3 configuration when cores go
|
|
* down.
|
|
******************************************************************************/
|
|
static void gicv3_cpuif_deactivate(void)
|
|
{
|
|
unsigned int val;
|
|
uintptr_t base;
|
|
|
|
/*
|
|
* When taking CPUs down we need to set GICR_WAKER.ProcessorSleep and
|
|
* wait for GICR_WAKER.ChildrenAsleep to get set.
|
|
* (GICv3 Architecture specification 5.4.23).
|
|
* GICR_WAKER is NOT banked per CPU, compute the correct base address
|
|
* per CPU.
|
|
*/
|
|
assert(g_gicr_base);
|
|
base = gicv3_get_rdist(g_gicr_base, read_mpidr());
|
|
if (base == (uintptr_t)NULL) {
|
|
/* No re-distributor base address. This interface cannot be
|
|
* configured.
|
|
*/
|
|
panic();
|
|
}
|
|
|
|
val = gicr_read_waker(base);
|
|
val |= WAKER_PS;
|
|
gicr_write_waker(base, val);
|
|
dsb();
|
|
|
|
/* We need to wait for ChildrenAsleep to set. */
|
|
val = gicr_read_waker(base);
|
|
while ((val & WAKER_CA) == 0)
|
|
val = gicr_read_waker(base);
|
|
}
|
|
|
|
|
|
/*******************************************************************************
|
|
* Enable secure interrupts and use FIQs to route them. Disable legacy bypass
|
|
* and set the priority mask register to allow all interrupts to trickle in.
|
|
******************************************************************************/
|
|
void arm_gic_cpuif_setup(void)
|
|
{
|
|
unsigned int val;
|
|
|
|
assert(g_gicc_base);
|
|
val = gicc_read_iidr(g_gicc_base);
|
|
|
|
/*
|
|
* If GICv3 we need to do a bit of additional setup. We want to
|
|
* allow default GICv2 behaviour but allow the next stage to
|
|
* enable full gicv3 features.
|
|
*/
|
|
if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3)
|
|
gicv3_cpuif_setup();
|
|
|
|
val = ENABLE_GRP0 | FIQ_EN | FIQ_BYP_DIS_GRP0;
|
|
val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1;
|
|
|
|
gicc_write_pmr(g_gicc_base, GIC_PRI_MASK);
|
|
gicc_write_ctlr(g_gicc_base, val);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Place the cpu interface in a state where it can never make a cpu exit wfi as
|
|
* as result of an asserted interrupt. This is critical for powering down a cpu
|
|
******************************************************************************/
|
|
void arm_gic_cpuif_deactivate(void)
|
|
{
|
|
unsigned int val;
|
|
|
|
/* Disable secure, non-secure interrupts and disable their bypass */
|
|
assert(g_gicc_base);
|
|
val = gicc_read_ctlr(g_gicc_base);
|
|
val &= ~(ENABLE_GRP0 | ENABLE_GRP1);
|
|
val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0;
|
|
val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1;
|
|
gicc_write_ctlr(g_gicc_base, val);
|
|
|
|
val = gicc_read_iidr(g_gicc_base);
|
|
|
|
/*
|
|
* If GICv3 we need to do a bit of additional setup. Make sure the
|
|
* RDIST is put to sleep.
|
|
*/
|
|
if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3)
|
|
gicv3_cpuif_deactivate();
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Per cpu gic distributor setup which will be done by all cpus after a cold
|
|
* boot/hotplug. This marks out the secure interrupts & enables them.
|
|
******************************************************************************/
|
|
void arm_gic_pcpu_distif_setup(void)
|
|
{
|
|
unsigned int index, irq_num, sec_ppi_sgi_mask;
|
|
|
|
assert(g_gicd_base);
|
|
|
|
/* Setup PPI priorities doing four at a time */
|
|
for (index = 0; index < 32; index += 4) {
|
|
gicd_write_ipriorityr(g_gicd_base, index,
|
|
GICD_IPRIORITYR_DEF_VAL);
|
|
}
|
|
|
|
assert(g_irq_sec_ptr);
|
|
sec_ppi_sgi_mask = 0;
|
|
|
|
/* Ensure all SGIs and PPIs are Group0 to begin with */
|
|
gicd_write_igroupr(g_gicd_base, 0, 0);
|
|
|
|
for (index = 0; index < g_num_irqs; index++) {
|
|
irq_num = g_irq_sec_ptr[index];
|
|
if (irq_num < MIN_SPI_ID) {
|
|
/* We have an SGI or a PPI */
|
|
sec_ppi_sgi_mask |= 1U << irq_num;
|
|
gicd_set_ipriorityr(g_gicd_base, irq_num,
|
|
GIC_HIGHEST_SEC_PRIORITY);
|
|
gicd_set_isenabler(g_gicd_base, irq_num);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Invert the bitmask to create a mask for non-secure PPIs and
|
|
* SGIs. Program the GICD_IGROUPR0 with this bit mask. This write will
|
|
* update the GICR_IGROUPR0 as well in case we are running on a GICv3
|
|
* system. This is critical if GICD_CTLR.ARE_NS=1.
|
|
*/
|
|
gicd_write_igroupr(g_gicd_base, 0, ~sec_ppi_sgi_mask);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Get the current CPU bit mask from GICD_ITARGETSR0
|
|
******************************************************************************/
|
|
static unsigned int arm_gic_get_cpuif_id(void)
|
|
{
|
|
unsigned int val;
|
|
|
|
val = gicd_read_itargetsr(g_gicd_base, 0);
|
|
return val & GIC_TARGET_CPU_MASK;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Global gic distributor setup which will be done by the primary cpu after a
|
|
* cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It
|
|
* then enables the secure GIC distributor interface.
|
|
******************************************************************************/
|
|
static void arm_gic_distif_setup(void)
|
|
{
|
|
unsigned int num_ints, ctlr, index, irq_num;
|
|
uint8_t target_cpu;
|
|
|
|
/* Disable the distributor before going further */
|
|
assert(g_gicd_base);
|
|
ctlr = gicd_read_ctlr(g_gicd_base);
|
|
ctlr &= ~(ENABLE_GRP0 | ENABLE_GRP1);
|
|
gicd_write_ctlr(g_gicd_base, ctlr);
|
|
|
|
/*
|
|
* Mark out non-secure SPI interrupts. The number of interrupts is
|
|
* calculated as 32 * (IT_LINES + 1). We do 32 at a time.
|
|
*/
|
|
num_ints = gicd_read_typer(g_gicd_base) & IT_LINES_NO_MASK;
|
|
num_ints = (num_ints + 1) << 5;
|
|
for (index = MIN_SPI_ID; index < num_ints; index += 32)
|
|
gicd_write_igroupr(g_gicd_base, index, ~0);
|
|
|
|
/* Setup SPI priorities doing four at a time */
|
|
for (index = MIN_SPI_ID; index < num_ints; index += 4) {
|
|
gicd_write_ipriorityr(g_gicd_base, index,
|
|
GICD_IPRIORITYR_DEF_VAL);
|
|
}
|
|
|
|
/* Read the target CPU mask */
|
|
target_cpu = arm_gic_get_cpuif_id();
|
|
|
|
/* Configure SPI secure interrupts now */
|
|
assert(g_irq_sec_ptr);
|
|
for (index = 0; index < g_num_irqs; index++) {
|
|
irq_num = g_irq_sec_ptr[index];
|
|
if (irq_num >= MIN_SPI_ID) {
|
|
/* We have an SPI */
|
|
gicd_clr_igroupr(g_gicd_base, irq_num);
|
|
gicd_set_ipriorityr(g_gicd_base, irq_num,
|
|
GIC_HIGHEST_SEC_PRIORITY);
|
|
gicd_set_itargetsr(g_gicd_base, irq_num, target_cpu);
|
|
gicd_set_isenabler(g_gicd_base, irq_num);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Configure the SGI and PPI. This is done in a separated function
|
|
* because each CPU is responsible for initializing its own private
|
|
* interrupts.
|
|
*/
|
|
arm_gic_pcpu_distif_setup();
|
|
|
|
gicd_write_ctlr(g_gicd_base, ctlr | ENABLE_GRP0);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Initialize the ARM GIC driver with the provided platform inputs
|
|
******************************************************************************/
|
|
void arm_gic_init(uintptr_t gicc_base,
|
|
uintptr_t gicd_base,
|
|
uintptr_t gicr_base,
|
|
const unsigned int *irq_sec_ptr,
|
|
unsigned int num_irqs)
|
|
{
|
|
unsigned int val;
|
|
|
|
assert(gicc_base);
|
|
assert(gicd_base);
|
|
assert(irq_sec_ptr);
|
|
|
|
g_gicc_base = gicc_base;
|
|
g_gicd_base = gicd_base;
|
|
|
|
val = gicc_read_iidr(g_gicc_base);
|
|
|
|
if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3) {
|
|
assert(gicr_base);
|
|
g_gicr_base = gicr_base;
|
|
}
|
|
|
|
g_irq_sec_ptr = irq_sec_ptr;
|
|
g_num_irqs = num_irqs;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Setup the ARM GIC CPU and distributor interfaces.
|
|
******************************************************************************/
|
|
void arm_gic_setup(void)
|
|
{
|
|
arm_gic_cpuif_setup();
|
|
arm_gic_distif_setup();
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* An ARM processor signals interrupt exceptions through the IRQ and FIQ pins.
|
|
* The interrupt controller knows which pin/line it uses to signal a type of
|
|
* interrupt. This function provides a common implementation of
|
|
* plat_interrupt_type_to_line() in an ARM GIC environment for optional re-use
|
|
* across platforms. It lets the interrupt management framework determine
|
|
* for a type of interrupt and security state, which line should be used in the
|
|
* SCR_EL3 to control its routing to EL3. The interrupt line is represented as
|
|
* the bit position of the IRQ or FIQ bit in the SCR_EL3.
|
|
******************************************************************************/
|
|
uint32_t arm_gic_interrupt_type_to_line(uint32_t type,
|
|
uint32_t security_state)
|
|
{
|
|
assert(type == INTR_TYPE_S_EL1 ||
|
|
type == INTR_TYPE_EL3 ||
|
|
type == INTR_TYPE_NS);
|
|
|
|
assert(sec_state_is_valid(security_state));
|
|
|
|
/*
|
|
* We ignore the security state parameter under the assumption that
|
|
* both normal and secure worlds are using ARM GICv2. This parameter
|
|
* will be used when the secure world starts using GICv3.
|
|
*/
|
|
#if ARM_GIC_ARCH == 2
|
|
return gicv2_interrupt_type_to_line(g_gicc_base, type);
|
|
#else
|
|
#error "Invalid ARM GIC architecture version specified for platform port"
|
|
#endif /* ARM_GIC_ARCH */
|
|
}
|
|
|
|
#if ARM_GIC_ARCH == 2
|
|
/*******************************************************************************
|
|
* This function returns the type of the highest priority pending interrupt at
|
|
* the GIC cpu interface. INTR_TYPE_INVAL is returned when there is no
|
|
* interrupt pending.
|
|
******************************************************************************/
|
|
uint32_t arm_gic_get_pending_interrupt_type(void)
|
|
{
|
|
uint32_t id;
|
|
|
|
assert(g_gicc_base);
|
|
id = gicc_read_hppir(g_gicc_base) & INT_ID_MASK;
|
|
|
|
/* Assume that all secure interrupts are S-EL1 interrupts */
|
|
if (id < 1022)
|
|
return INTR_TYPE_S_EL1;
|
|
|
|
if (id == GIC_SPURIOUS_INTERRUPT)
|
|
return INTR_TYPE_INVAL;
|
|
|
|
return INTR_TYPE_NS;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function returns the id of the highest priority pending interrupt at
|
|
* the GIC cpu interface. INTR_ID_UNAVAILABLE is returned when there is no
|
|
* interrupt pending.
|
|
******************************************************************************/
|
|
uint32_t arm_gic_get_pending_interrupt_id(void)
|
|
{
|
|
uint32_t id;
|
|
|
|
assert(g_gicc_base);
|
|
id = gicc_read_hppir(g_gicc_base) & INT_ID_MASK;
|
|
|
|
if (id < 1022)
|
|
return id;
|
|
|
|
if (id == 1023)
|
|
return INTR_ID_UNAVAILABLE;
|
|
|
|
/*
|
|
* Find out which non-secure interrupt it is under the assumption that
|
|
* the GICC_CTLR.AckCtl bit is 0.
|
|
*/
|
|
return gicc_read_ahppir(g_gicc_base) & INT_ID_MASK;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This functions reads the GIC cpu interface Interrupt Acknowledge register
|
|
* to start handling the pending interrupt. It returns the contents of the IAR.
|
|
******************************************************************************/
|
|
uint32_t arm_gic_acknowledge_interrupt(void)
|
|
{
|
|
assert(g_gicc_base);
|
|
return gicc_read_IAR(g_gicc_base);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This functions writes the GIC cpu interface End Of Interrupt register with
|
|
* the passed value to finish handling the active interrupt
|
|
******************************************************************************/
|
|
void arm_gic_end_of_interrupt(uint32_t id)
|
|
{
|
|
assert(g_gicc_base);
|
|
gicc_write_EOIR(g_gicc_base, id);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function returns the type of the interrupt id depending upon the group
|
|
* this interrupt has been configured under by the interrupt controller i.e.
|
|
* group0 or group1.
|
|
******************************************************************************/
|
|
uint32_t arm_gic_get_interrupt_type(uint32_t id)
|
|
{
|
|
uint32_t group;
|
|
|
|
assert(g_gicd_base);
|
|
group = gicd_get_igroupr(g_gicd_base, id);
|
|
|
|
/* Assume that all secure interrupts are S-EL1 interrupts */
|
|
if (group == GRP0)
|
|
return INTR_TYPE_S_EL1;
|
|
else
|
|
return INTR_TYPE_NS;
|
|
}
|
|
|
|
#else
|
|
#error "Invalid ARM GIC architecture version specified for platform port"
|
|
#endif /* ARM_GIC_ARCH */
|