arm-trusted-firmware/services/std_svc/spm/el3_spmc/spmc_setup.c
Achin Gupta 2e21921502 feat(spmc): add support for v1.1 FF-A boot protocol
A partition can request the use of the FF-A boot protocol via
an entry in its manifest along with the register (0-3)
that should be populated with a pointer to a data structure
containing boot related information. Currently the boot
information consists of an allocated memory region
containing the SP's manifest, allowing it to map and parse
any extra information as required.

This implementation only supports the v1.1 data structures
and will return an error if a v1.0 client requests the usage
of the protocol.

Signed-off-by: Achin Gupta <achin.gupta@arm.com>
Signed-off-by: Marc Bonnici <marc.bonnici@arm.com>
Change-Id: I67692553a90a7e7d94c64fe275edd247b512efca
2022-05-19 10:57:37 +01:00

279 lines
7.8 KiB
C

/*
* Copyright (c) 2022, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <string.h>
#include <arch.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <common/fdt_wrappers.h>
#include <context.h>
#include <lib/el3_runtime/context_mgmt.h>
#include <lib/utils.h>
#include <lib/xlat_tables/xlat_tables_v2.h>
#include <libfdt.h>
#include <plat/common/common_def.h>
#include <plat/common/platform.h>
#include <services/ffa_svc.h>
#include "spm_common.h"
#include "spmc.h"
#include <tools_share/firmware_image_package.h>
#include <platform_def.h>
/*
* Statically allocate a page of memory for passing boot information to an SP.
*/
static uint8_t ffa_boot_info_mem[PAGE_SIZE] __aligned(PAGE_SIZE);
/*
* This function creates a initialization descriptor in the memory reserved
* for passing boot information to an SP. It then copies the partition manifest
* into this region and ensures that its reference in the initialization
* descriptor is updated.
*/
static void spmc_create_boot_info(entry_point_info_t *ep_info,
struct secure_partition_desc *sp)
{
struct ffa_boot_info_header *boot_header;
struct ffa_boot_info_desc *boot_descriptor;
uintptr_t manifest_addr;
/*
* Calculate the maximum size of the manifest that can be accommodated
* in the boot information memory region.
*/
const unsigned int
max_manifest_sz = sizeof(ffa_boot_info_mem) -
(sizeof(struct ffa_boot_info_header) +
sizeof(struct ffa_boot_info_desc));
/*
* The current implementation only supports the FF-A v1.1
* implementation of the boot protocol, therefore check
* that a v1.0 SP has not requested use of the protocol.
*/
if (sp->ffa_version == MAKE_FFA_VERSION(1, 0)) {
ERROR("FF-A boot protocol not supported for v1.0 clients\n");
return;
}
/*
* Check if the manifest will fit into the boot info memory region else
* bail.
*/
if (ep_info->args.arg1 > max_manifest_sz) {
WARN("Unable to copy manifest into boot information. ");
WARN("Max sz = %u bytes. Manifest sz = %lu bytes\n",
max_manifest_sz, ep_info->args.arg1);
return;
}
/* Zero the memory region before populating. */
memset(ffa_boot_info_mem, 0, PAGE_SIZE);
/*
* Populate the ffa_boot_info_header at the start of the boot info
* region.
*/
boot_header = (struct ffa_boot_info_header *) ffa_boot_info_mem;
/* Position the ffa_boot_info_desc after the ffa_boot_info_header. */
boot_header->offset_boot_info_desc =
sizeof(struct ffa_boot_info_header);
boot_descriptor = (struct ffa_boot_info_desc *)
(ffa_boot_info_mem +
boot_header->offset_boot_info_desc);
/*
* We must use the FF-A version coresponding to the version implemented
* by the SP. Currently this can only be v1.1.
*/
boot_header->version = sp->ffa_version;
/* Populate the boot information header. */
boot_header->size_boot_info_desc = sizeof(struct ffa_boot_info_desc);
/* Set the signature "0xFFA". */
boot_header->signature = FFA_INIT_DESC_SIGNATURE;
/* Set the count. Currently 1 since only the manifest is specified. */
boot_header->count_boot_info_desc = 1;
/* Populate the boot information descriptor for the manifest. */
boot_descriptor->type =
FFA_BOOT_INFO_TYPE(FFA_BOOT_INFO_TYPE_STD) |
FFA_BOOT_INFO_TYPE_ID(FFA_BOOT_INFO_TYPE_ID_FDT);
boot_descriptor->flags =
FFA_BOOT_INFO_FLAG_NAME(FFA_BOOT_INFO_FLAG_NAME_UUID) |
FFA_BOOT_INFO_FLAG_CONTENT(FFA_BOOT_INFO_FLAG_CONTENT_ADR);
/*
* Copy the manifest into boot info region after the boot information
* descriptor.
*/
boot_descriptor->size_boot_info = (uint32_t) ep_info->args.arg1;
manifest_addr = (uintptr_t) (ffa_boot_info_mem +
boot_header->offset_boot_info_desc +
boot_header->size_boot_info_desc);
memcpy((void *) manifest_addr, (void *) ep_info->args.arg0,
boot_descriptor->size_boot_info);
boot_descriptor->content = manifest_addr;
/* Calculate the size of the total boot info blob. */
boot_header->size_boot_info_blob = boot_header->offset_boot_info_desc +
boot_descriptor->size_boot_info +
(boot_header->count_boot_info_desc *
boot_header->size_boot_info_desc);
INFO("SP boot info @ 0x%lx, size: %u bytes.\n",
(uintptr_t) ffa_boot_info_mem,
boot_header->size_boot_info_blob);
INFO("SP manifest @ 0x%lx, size: %u bytes.\n",
boot_descriptor->content,
boot_descriptor->size_boot_info);
}
/*
* We are assuming that the index of the execution
* context used is the linear index of the current physical cpu.
*/
unsigned int get_ec_index(struct secure_partition_desc *sp)
{
return plat_my_core_pos();
}
/* S-EL1 partition specific initialisation. */
void spmc_el1_sp_setup(struct secure_partition_desc *sp,
entry_point_info_t *ep_info)
{
/* Sanity check input arguments. */
assert(sp != NULL);
assert(ep_info != NULL);
/* Initialise the SPSR for S-EL1 SPs. */
ep_info->spsr = SPSR_64(MODE_EL1, MODE_SP_ELX,
DISABLE_ALL_EXCEPTIONS);
/*
* TF-A Implementation defined behaviour to provide the linear
* core ID in the x4 register.
*/
ep_info->args.arg4 = (uintptr_t) plat_my_core_pos();
/*
* Check whether setup is being performed for the primary or a secondary
* execution context. In the latter case, indicate to the SP that this
* is a warm boot.
* TODO: This check would need to be reworked if the same entry point is
* used for both primary and secondary initialisation.
*/
if (sp->secondary_ep != 0U) {
/*
* Sanity check that the secondary entry point is still what was
* originally set.
*/
assert(sp->secondary_ep == ep_info->pc);
ep_info->args.arg0 = FFA_WB_TYPE_S2RAM;
}
}
/* Common initialisation for all SPs. */
void spmc_sp_common_setup(struct secure_partition_desc *sp,
entry_point_info_t *ep_info,
int32_t boot_info_reg)
{
uint16_t sp_id;
/* Assign FF-A Partition ID if not already assigned. */
if (sp->sp_id == INV_SP_ID) {
sp_id = FFA_SP_ID_BASE + ACTIVE_SP_DESC_INDEX;
/*
* Ensure we don't clash with previously assigned partition
* IDs.
*/
while (!is_ffa_secure_id_valid(sp_id)) {
sp_id++;
if (sp_id == FFA_SWD_ID_LIMIT) {
ERROR("Unable to determine valid SP ID.\n");
panic();
}
}
sp->sp_id = sp_id;
}
/*
* We currently only support S-EL1 partitions so ensure this is the
* case.
*/
assert(sp->runtime_el == S_EL1);
/* Check if the SP wants to use the FF-A boot protocol. */
if (boot_info_reg >= 0) {
/*
* Create a boot information descriptor and copy the partition
* manifest into the reserved memory region for consumption by
* the SP.
*/
spmc_create_boot_info(ep_info, sp);
/*
* We have consumed what we need from ep args so we can now
* zero them before we start populating with new information
* specifically for the SP.
*/
zeromem(&ep_info->args, sizeof(ep_info->args));
/*
* Pass the address of the boot information in the
* boot_info_reg.
*/
switch (boot_info_reg) {
case 0:
ep_info->args.arg0 = (uintptr_t) ffa_boot_info_mem;
break;
case 1:
ep_info->args.arg1 = (uintptr_t) ffa_boot_info_mem;
break;
case 2:
ep_info->args.arg2 = (uintptr_t) ffa_boot_info_mem;
break;
case 3:
ep_info->args.arg3 = (uintptr_t) ffa_boot_info_mem;
break;
default:
ERROR("Invalid value for \"gp-register-num\" %d.\n",
boot_info_reg);
}
} else {
/*
* We don't need any of the information that was populated
* in ep_args so we can clear them.
*/
zeromem(&ep_info->args, sizeof(ep_info->args));
}
}
/*
* Initialise the SP context now we have populated the common and EL specific
* entrypoint information.
*/
void spmc_sp_common_ep_commit(struct secure_partition_desc *sp,
entry_point_info_t *ep_info)
{
cpu_context_t *cpu_ctx;
cpu_ctx = &(spmc_get_sp_ec(sp)->cpu_ctx);
print_entry_point_info(ep_info);
cm_setup_context(cpu_ctx, ep_info);
}