arm-trusted-firmware/plat/mediatek/mt8173/drivers/spm/spm.c
Antonio Nino Diaz 09d40e0e08 Sanitise includes across codebase
Enforce full include path for includes. Deprecate old paths.

The following folders inside include/lib have been left unchanged:

- include/lib/cpus/${ARCH}
- include/lib/el3_runtime/${ARCH}

The reason for this change is that having a global namespace for
includes isn't a good idea. It defeats one of the advantages of having
folders and it introduces problems that are sometimes subtle (because
you may not know the header you are actually including if there are two
of them).

For example, this patch had to be created because two headers were
called the same way: e0ea0928d5 ("Fix gpio includes of mt8173 platform
to avoid collision."). More recently, this patch has had similar
problems: 46f9b2c3a2 ("drivers: add tzc380 support").

This problem was introduced in commit 4ecca33988 ("Move include and
source files to logical locations"). At that time, there weren't too
many headers so it wasn't a real issue. However, time has shown that
this creates problems.

Platforms that want to preserve the way they include headers may add the
removed paths to PLAT_INCLUDES, but this is discouraged.

Change-Id: I39dc53ed98f9e297a5966e723d1936d6ccf2fc8f
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
2019-01-04 10:43:17 +00:00

371 lines
10 KiB
C

/*
* Copyright (c) 2015, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <common/debug.h>
#include <lib/bakery_lock.h>
#include <lib/mmio.h>
#include <mt8173_def.h>
#include <spm.h>
#include <spm_suspend.h>
/*
* System Power Manager (SPM) is a hardware module, which controls cpu or
* system power for different power scenarios using different firmware, i.e.,
* - spm_hotplug.c for cpu power control in cpu hotplug flow.
* - spm_mcdi.c for cpu power control in cpu idle power saving state.
* - spm_suspend.c for system power control in system suspend scenario.
*
* This file provide utility functions common to hotplug, mcdi(idle), suspend
* power scenarios. A bakery lock (software lock) is incoporated to protect
* certain critical sections to avoid kicking different SPM firmware
* concurrently.
*/
#define SPM_SYSCLK_SETTLE 128 /* 3.9ms */
DEFINE_BAKERY_LOCK(spm_lock);
static int spm_hotplug_ready __section("tzfw_coherent_mem");
static int spm_mcdi_ready __section("tzfw_coherent_mem");
static int spm_suspend_ready __section("tzfw_coherent_mem");
void spm_lock_init(void)
{
bakery_lock_init(&spm_lock);
}
void spm_lock_get(void)
{
bakery_lock_get(&spm_lock);
}
void spm_lock_release(void)
{
bakery_lock_release(&spm_lock);
}
int is_mcdi_ready(void)
{
return spm_mcdi_ready;
}
int is_hotplug_ready(void)
{
return spm_hotplug_ready;
}
int is_suspend_ready(void)
{
return spm_suspend_ready;
}
void set_mcdi_ready(void)
{
spm_mcdi_ready = 1;
spm_hotplug_ready = 0;
spm_suspend_ready = 0;
}
void set_hotplug_ready(void)
{
spm_mcdi_ready = 0;
spm_hotplug_ready = 1;
spm_suspend_ready = 0;
}
void set_suspend_ready(void)
{
spm_mcdi_ready = 0;
spm_hotplug_ready = 0;
spm_suspend_ready = 1;
}
void clear_all_ready(void)
{
spm_mcdi_ready = 0;
spm_hotplug_ready = 0;
spm_suspend_ready = 0;
}
void spm_register_init(void)
{
mmio_write_32(SPM_POWERON_CONFIG_SET, SPM_REGWR_CFG_KEY | SPM_REGWR_EN);
mmio_write_32(SPM_POWER_ON_VAL0, 0);
mmio_write_32(SPM_POWER_ON_VAL1, POWER_ON_VAL1_DEF);
mmio_write_32(SPM_PCM_PWR_IO_EN, 0);
mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY | CON0_PCM_SW_RESET);
mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY);
if (mmio_read_32(SPM_PCM_FSM_STA) != PCM_FSM_STA_DEF)
WARN("PCM reset failed\n");
mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY | CON0_IM_SLEEP_DVS);
mmio_write_32(SPM_PCM_CON1, CON1_CFG_KEY | CON1_EVENT_LOCK_EN |
CON1_SPM_SRAM_ISO_B | CON1_SPM_SRAM_SLP_B | CON1_MIF_APBEN);
mmio_write_32(SPM_PCM_IM_PTR, 0);
mmio_write_32(SPM_PCM_IM_LEN, 0);
mmio_write_32(SPM_CLK_CON, CC_SYSCLK0_EN_1 | CC_SYSCLK0_EN_0 |
CC_SYSCLK1_EN_0 | CC_SRCLKENA_MASK_0 | CC_CLKSQ1_SEL |
CC_CXO32K_RM_EN_MD2 | CC_CXO32K_RM_EN_MD1 | CC_MD32_DCM_EN);
mmio_write_32(SPM_SLEEP_ISR_MASK, 0xff0c);
mmio_write_32(SPM_SLEEP_ISR_STATUS, 0xc);
mmio_write_32(SPM_PCM_SW_INT_CLEAR, 0xff);
mmio_write_32(SPM_MD32_SRAM_CON, 0xff0);
}
void spm_reset_and_init_pcm(void)
{
unsigned int con1;
int i = 0;
mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY | CON0_PCM_SW_RESET);
mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY);
while (mmio_read_32(SPM_PCM_FSM_STA) != PCM_FSM_STA_DEF) {
i++;
if (i > 1000) {
i = 0;
WARN("PCM reset failed\n");
break;
}
}
mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY | CON0_IM_SLEEP_DVS);
con1 = mmio_read_32(SPM_PCM_CON1) &
(CON1_PCM_WDT_WAKE_MODE | CON1_PCM_WDT_EN);
mmio_write_32(SPM_PCM_CON1, con1 | CON1_CFG_KEY | CON1_EVENT_LOCK_EN |
CON1_SPM_SRAM_ISO_B | CON1_SPM_SRAM_SLP_B |
CON1_IM_NONRP_EN | CON1_MIF_APBEN);
}
void spm_init_pcm_register(void)
{
mmio_write_32(SPM_PCM_REG_DATA_INI, mmio_read_32(SPM_POWER_ON_VAL0));
mmio_write_32(SPM_PCM_PWR_IO_EN, PCM_RF_SYNC_R0);
mmio_write_32(SPM_PCM_PWR_IO_EN, 0);
mmio_write_32(SPM_PCM_REG_DATA_INI, mmio_read_32(SPM_POWER_ON_VAL1));
mmio_write_32(SPM_PCM_PWR_IO_EN, PCM_RF_SYNC_R7);
mmio_write_32(SPM_PCM_PWR_IO_EN, 0);
}
void spm_set_power_control(const struct pwr_ctrl *pwrctrl)
{
mmio_write_32(SPM_AP_STANBY_CON, (!pwrctrl->md32_req_mask << 21) |
(!pwrctrl->mfg_req_mask << 17) |
(!pwrctrl->disp_req_mask << 16) |
(!!pwrctrl->mcusys_idle_mask << 7) |
(!!pwrctrl->ca15top_idle_mask << 6) |
(!!pwrctrl->ca7top_idle_mask << 5) |
(!!pwrctrl->wfi_op << 4));
mmio_write_32(SPM_PCM_SRC_REQ, (!!pwrctrl->pcm_apsrc_req << 0));
mmio_write_32(SPM_PCM_PASR_DPD_2, 0);
mmio_clrsetbits_32(SPM_CLK_CON, CC_SRCLKENA_MASK_0,
(pwrctrl->srclkenai_mask ? CC_SRCLKENA_MASK_0 : 0));
mmio_write_32(SPM_SLEEP_CA15_WFI0_EN, !!pwrctrl->ca15_wfi0_en);
mmio_write_32(SPM_SLEEP_CA15_WFI1_EN, !!pwrctrl->ca15_wfi1_en);
mmio_write_32(SPM_SLEEP_CA15_WFI2_EN, !!pwrctrl->ca15_wfi2_en);
mmio_write_32(SPM_SLEEP_CA15_WFI3_EN, !!pwrctrl->ca15_wfi3_en);
mmio_write_32(SPM_SLEEP_CA7_WFI0_EN, !!pwrctrl->ca7_wfi0_en);
mmio_write_32(SPM_SLEEP_CA7_WFI1_EN, !!pwrctrl->ca7_wfi1_en);
mmio_write_32(SPM_SLEEP_CA7_WFI2_EN, !!pwrctrl->ca7_wfi2_en);
mmio_write_32(SPM_SLEEP_CA7_WFI3_EN, !!pwrctrl->ca7_wfi3_en);
}
void spm_set_wakeup_event(const struct pwr_ctrl *pwrctrl)
{
unsigned int val, mask;
if (pwrctrl->timer_val_cust == 0)
val = pwrctrl->timer_val ? pwrctrl->timer_val : PCM_TIMER_MAX;
else
val = pwrctrl->timer_val_cust;
mmio_write_32(SPM_PCM_TIMER_VAL, val);
mmio_setbits_32(SPM_PCM_CON1, CON1_CFG_KEY);
if (pwrctrl->wake_src_cust == 0)
mask = pwrctrl->wake_src;
else
mask = pwrctrl->wake_src_cust;
if (pwrctrl->syspwreq_mask)
mask &= ~WAKE_SRC_SYSPWREQ;
mmio_write_32(SPM_SLEEP_WAKEUP_EVENT_MASK, ~mask);
mmio_write_32(SPM_SLEEP_ISR_MASK, 0xfe04);
}
void spm_get_wakeup_status(struct wake_status *wakesta)
{
wakesta->assert_pc = mmio_read_32(SPM_PCM_REG_DATA_INI);
wakesta->r12 = mmio_read_32(SPM_PCM_REG12_DATA);
wakesta->raw_sta = mmio_read_32(SPM_SLEEP_ISR_RAW_STA);
wakesta->wake_misc = mmio_read_32(SPM_SLEEP_WAKEUP_MISC);
wakesta->timer_out = mmio_read_32(SPM_PCM_TIMER_OUT);
wakesta->r13 = mmio_read_32(SPM_PCM_REG13_DATA);
wakesta->idle_sta = mmio_read_32(SPM_SLEEP_SUBSYS_IDLE_STA);
wakesta->debug_flag = mmio_read_32(SPM_PCM_PASR_DPD_3);
wakesta->event_reg = mmio_read_32(SPM_PCM_EVENT_REG_STA);
wakesta->isr = mmio_read_32(SPM_SLEEP_ISR_STATUS);
}
void spm_init_event_vector(const struct pcm_desc *pcmdesc)
{
/* init event vector register */
mmio_write_32(SPM_PCM_EVENT_VECTOR0, pcmdesc->vec0);
mmio_write_32(SPM_PCM_EVENT_VECTOR1, pcmdesc->vec1);
mmio_write_32(SPM_PCM_EVENT_VECTOR2, pcmdesc->vec2);
mmio_write_32(SPM_PCM_EVENT_VECTOR3, pcmdesc->vec3);
mmio_write_32(SPM_PCM_EVENT_VECTOR4, pcmdesc->vec4);
mmio_write_32(SPM_PCM_EVENT_VECTOR5, pcmdesc->vec5);
mmio_write_32(SPM_PCM_EVENT_VECTOR6, pcmdesc->vec6);
mmio_write_32(SPM_PCM_EVENT_VECTOR7, pcmdesc->vec7);
/* event vector will be enabled by PCM itself */
}
void spm_kick_im_to_fetch(const struct pcm_desc *pcmdesc)
{
unsigned int ptr = 0, len, con0;
ptr = (unsigned int)(unsigned long)(pcmdesc->base);
len = pcmdesc->size - 1;
if (mmio_read_32(SPM_PCM_IM_PTR) != ptr ||
mmio_read_32(SPM_PCM_IM_LEN) != len ||
pcmdesc->sess > 2) {
mmio_write_32(SPM_PCM_IM_PTR, ptr);
mmio_write_32(SPM_PCM_IM_LEN, len);
} else {
mmio_setbits_32(SPM_PCM_CON1, CON1_CFG_KEY | CON1_IM_SLAVE);
}
/* kick IM to fetch (only toggle IM_KICK) */
con0 = mmio_read_32(SPM_PCM_CON0) & ~(CON0_IM_KICK | CON0_PCM_KICK);
mmio_write_32(SPM_PCM_CON0, con0 | CON0_CFG_KEY | CON0_IM_KICK);
mmio_write_32(SPM_PCM_CON0, con0 | CON0_CFG_KEY);
/* kick IM to fetch (only toggle PCM_KICK) */
con0 = mmio_read_32(SPM_PCM_CON0) & ~(CON0_IM_KICK | CON0_PCM_KICK);
mmio_write_32(SPM_PCM_CON0, con0 | CON0_CFG_KEY | CON0_PCM_KICK);
mmio_write_32(SPM_PCM_CON0, con0 | CON0_CFG_KEY);
}
void spm_set_sysclk_settle(void)
{
mmio_write_32(SPM_CLK_SETTLE, SPM_SYSCLK_SETTLE);
INFO("settle = %u\n", mmio_read_32(SPM_CLK_SETTLE));
}
void spm_kick_pcm_to_run(struct pwr_ctrl *pwrctrl)
{
unsigned int con1;
con1 = mmio_read_32(SPM_PCM_CON1) &
~(CON1_PCM_WDT_WAKE_MODE | CON1_PCM_WDT_EN);
mmio_write_32(SPM_PCM_CON1, CON1_CFG_KEY | con1);
if (mmio_read_32(SPM_PCM_TIMER_VAL) > PCM_TIMER_MAX)
mmio_write_32(SPM_PCM_TIMER_VAL, PCM_TIMER_MAX);
mmio_write_32(SPM_PCM_WDT_TIMER_VAL,
mmio_read_32(SPM_PCM_TIMER_VAL) + PCM_WDT_TIMEOUT);
mmio_write_32(SPM_PCM_CON1, con1 | CON1_CFG_KEY | CON1_PCM_WDT_EN);
mmio_write_32(SPM_PCM_PASR_DPD_0, 0);
mmio_write_32(SPM_PCM_MAS_PAUSE_MASK, 0xffffffff);
mmio_write_32(SPM_PCM_REG_DATA_INI, 0);
mmio_clrbits_32(SPM_CLK_CON, CC_DISABLE_DORM_PWR);
mmio_write_32(SPM_PCM_FLAGS, pwrctrl->pcm_flags);
mmio_clrsetbits_32(SPM_CLK_CON, CC_LOCK_INFRA_DCM,
(pwrctrl->infra_dcm_lock ? CC_LOCK_INFRA_DCM : 0));
mmio_write_32(SPM_PCM_PWR_IO_EN,
(pwrctrl->r0_ctrl_en ? PCM_PWRIO_EN_R0 : 0) |
(pwrctrl->r7_ctrl_en ? PCM_PWRIO_EN_R7 : 0));
}
void spm_clean_after_wakeup(void)
{
mmio_clrsetbits_32(SPM_PCM_CON1, CON1_PCM_WDT_EN, CON1_CFG_KEY);
mmio_write_32(SPM_PCM_PWR_IO_EN, 0);
mmio_write_32(SPM_SLEEP_CPU_WAKEUP_EVENT, 0);
mmio_clrsetbits_32(SPM_PCM_CON1, CON1_PCM_TIMER_EN, CON1_CFG_KEY);
mmio_write_32(SPM_SLEEP_WAKEUP_EVENT_MASK, ~0);
mmio_write_32(SPM_SLEEP_ISR_MASK, 0xFF0C);
mmio_write_32(SPM_SLEEP_ISR_STATUS, 0xC);
mmio_write_32(SPM_PCM_SW_INT_CLEAR, 0xFF);
}
enum wake_reason_t spm_output_wake_reason(struct wake_status *wakesta)
{
enum wake_reason_t wr;
int i;
wr = WR_UNKNOWN;
if (wakesta->assert_pc != 0) {
ERROR("PCM ASSERT AT %u, r12=0x%x, r13=0x%x, debug_flag=0x%x\n",
wakesta->assert_pc, wakesta->r12, wakesta->r13,
wakesta->debug_flag);
return WR_PCM_ASSERT;
}
if (wakesta->r12 & WAKE_SRC_SPM_MERGE) {
if (wakesta->wake_misc & WAKE_MISC_PCM_TIMER)
wr = WR_PCM_TIMER;
if (wakesta->wake_misc & WAKE_MISC_CPU_WAKE)
wr = WR_WAKE_SRC;
}
for (i = 1; i < 32; i++) {
if (wakesta->r12 & (1U << i))
wr = WR_WAKE_SRC;
}
if ((wakesta->event_reg & 0x100000) == 0) {
INFO("pcm sleep abort!\n");
wr = WR_PCM_ABORT;
}
INFO("timer_out = %u, r12 = 0x%x, r13 = 0x%x, debug_flag = 0x%x\n",
wakesta->timer_out, wakesta->r12, wakesta->r13,
wakesta->debug_flag);
INFO("raw_sta = 0x%x, idle_sta = 0x%x, event_reg = 0x%x, isr = 0x%x\n",
wakesta->raw_sta, wakesta->idle_sta, wakesta->event_reg,
wakesta->isr);
return wr;
}
void spm_boot_init(void)
{
/* set spm transaction to secure mode */
mmio_write_32(DEVAPC0_APC_CON, 0x0);
mmio_write_32(DEVAPC0_MAS_SEC_0, 0x200);
/* Only CPU0 is online during boot, initialize cpu online reserve bit */
mmio_write_32(SPM_PCM_RESERVE, 0xFE);
mmio_clrbits_32(AP_PLL_CON3, 0xFFFFF);
mmio_clrbits_32(AP_PLL_CON4, 0xF);
spm_lock_init();
spm_register_init();
}