mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-09-03 12:51:04 +02:00
The video memory carveout has to be re-sized depending on the Video content. This requires the NS world to send us new base/size values. Before setting up the new region, we must zero out the previous memory region, so that the video frames are not leaked to the outside world. This patch adds the logic to zero out the previous memory carveout region. Change-Id: I471167ef7747154440df5c1a5e015fbeb69d9043 Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
737 lines
23 KiB
C
737 lines
23 KiB
C
/*
|
|
* Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* Neither the name of ARM nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific
|
|
* prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <arch_helpers.h>
|
|
#include <assert.h>
|
|
#include <bl_common.h>
|
|
#include <debug.h>
|
|
#include <mce.h>
|
|
#include <memctrl.h>
|
|
#include <memctrl_v2.h>
|
|
#include <mmio.h>
|
|
#include <smmu.h>
|
|
#include <string.h>
|
|
#include <tegra_def.h>
|
|
#include <tegra_platform.h>
|
|
#include <utils.h>
|
|
#include <xlat_tables_v2.h>
|
|
|
|
#define TEGRA_GPU_RESET_REG_OFFSET 0x30
|
|
#define GPU_RESET_BIT (1 << 0)
|
|
|
|
/* Video Memory base and size (live values) */
|
|
static uint64_t video_mem_base;
|
|
static uint64_t video_mem_size_mb;
|
|
|
|
static void tegra_memctrl_reconfig_mss_clients(void)
|
|
{
|
|
#if ENABLE_ROC_FOR_ORDERING_CLIENT_REQUESTS
|
|
uint32_t val, wdata_0, wdata_1;
|
|
|
|
/*
|
|
* Assert Memory Controller's HOTRESET_FLUSH_ENABLE signal for
|
|
* boot and strongly ordered MSS clients to flush existing memory
|
|
* traffic and stall future requests.
|
|
*/
|
|
val = tegra_mc_read_32(MC_CLIENT_HOTRESET_CTRL0);
|
|
assert(val == MC_CLIENT_HOTRESET_CTRL0_RESET_VAL);
|
|
|
|
wdata_0 = MC_CLIENT_HOTRESET_CTRL0_HDA_FLUSH_ENB |
|
|
#if ENABLE_AFI_DEVICE
|
|
MC_CLIENT_HOTRESET_CTRL0_AFI_FLUSH_ENB |
|
|
#endif
|
|
MC_CLIENT_HOTRESET_CTRL0_SATA_FLUSH_ENB |
|
|
MC_CLIENT_HOTRESET_CTRL0_XUSB_HOST_FLUSH_ENB |
|
|
MC_CLIENT_HOTRESET_CTRL0_XUSB_DEV_FLUSH_ENB;
|
|
tegra_mc_write_32(MC_CLIENT_HOTRESET_CTRL0, wdata_0);
|
|
|
|
/* Wait for HOTRESET STATUS to indicate FLUSH_DONE */
|
|
do {
|
|
val = tegra_mc_read_32(MC_CLIENT_HOTRESET_STATUS0);
|
|
} while ((val & wdata_0) != wdata_0);
|
|
|
|
/* Wait one more time due to SW WAR for known legacy issue */
|
|
do {
|
|
val = tegra_mc_read_32(MC_CLIENT_HOTRESET_STATUS0);
|
|
} while ((val & wdata_0) != wdata_0);
|
|
|
|
val = tegra_mc_read_32(MC_CLIENT_HOTRESET_CTRL1);
|
|
assert(val == MC_CLIENT_HOTRESET_CTRL1_RESET_VAL);
|
|
|
|
wdata_1 = MC_CLIENT_HOTRESET_CTRL1_SDMMC4A_FLUSH_ENB |
|
|
MC_CLIENT_HOTRESET_CTRL1_APE_FLUSH_ENB |
|
|
MC_CLIENT_HOTRESET_CTRL1_SE_FLUSH_ENB |
|
|
MC_CLIENT_HOTRESET_CTRL1_ETR_FLUSH_ENB |
|
|
MC_CLIENT_HOTRESET_CTRL1_AXIS_FLUSH_ENB |
|
|
MC_CLIENT_HOTRESET_CTRL1_EQOS_FLUSH_ENB |
|
|
MC_CLIENT_HOTRESET_CTRL1_UFSHC_FLUSH_ENB |
|
|
MC_CLIENT_HOTRESET_CTRL1_BPMP_FLUSH_ENB |
|
|
MC_CLIENT_HOTRESET_CTRL1_AON_FLUSH_ENB |
|
|
MC_CLIENT_HOTRESET_CTRL1_SCE_FLUSH_ENB;
|
|
tegra_mc_write_32(MC_CLIENT_HOTRESET_CTRL1, wdata_1);
|
|
|
|
/* Wait for HOTRESET STATUS to indicate FLUSH_DONE */
|
|
do {
|
|
val = tegra_mc_read_32(MC_CLIENT_HOTRESET_STATUS1);
|
|
} while ((val & wdata_1) != wdata_1);
|
|
|
|
/* Wait one more time due to SW WAR for known legacy issue */
|
|
do {
|
|
val = tegra_mc_read_32(MC_CLIENT_HOTRESET_STATUS1);
|
|
} while ((val & wdata_1) != wdata_1);
|
|
|
|
/*
|
|
* Change MEMTYPE_OVERRIDE from SO_DEV -> PASSTHRU for boot and
|
|
* strongly ordered MSS clients. ROC needs to be single point
|
|
* of control on overriding the memory type. So, remove TSA's
|
|
* memtype override.
|
|
*/
|
|
#if ENABLE_AFI_DEVICE
|
|
mc_set_tsa_passthrough(AFIW);
|
|
#endif
|
|
mc_set_tsa_passthrough(HDAW);
|
|
mc_set_tsa_passthrough(SATAW);
|
|
mc_set_tsa_passthrough(XUSB_HOSTW);
|
|
mc_set_tsa_passthrough(XUSB_DEVW);
|
|
mc_set_tsa_passthrough(SDMMCWAB);
|
|
mc_set_tsa_passthrough(APEDMAW);
|
|
mc_set_tsa_passthrough(SESWR);
|
|
mc_set_tsa_passthrough(ETRW);
|
|
mc_set_tsa_passthrough(AXISW);
|
|
mc_set_tsa_passthrough(EQOSW);
|
|
mc_set_tsa_passthrough(UFSHCW);
|
|
mc_set_tsa_passthrough(BPMPDMAW);
|
|
mc_set_tsa_passthrough(AONDMAW);
|
|
mc_set_tsa_passthrough(SCEDMAW);
|
|
|
|
/*
|
|
* Change COH_PATH_OVERRIDE_SO_DEV from NO_OVERRIDE -> FORCE_COHERENT
|
|
* for boot and strongly ordered MSS clients. This steers all sodev
|
|
* transactions to ROC.
|
|
*
|
|
* Change AXID_OVERRIDE/AXID_OVERRIDE_SO_DEV only for some clients
|
|
* whose AXI IDs we know and trust.
|
|
*/
|
|
|
|
#if ENABLE_AFI_DEVICE
|
|
/* Match AFIW */
|
|
mc_set_forced_coherent_so_dev_cfg(AFIR);
|
|
#endif
|
|
|
|
/*
|
|
* See bug 200131110 comment #35 - there are no normal requests
|
|
* and AWID for SO/DEV requests is hardcoded in RTL for a
|
|
* particular PCIE controller
|
|
*/
|
|
#if ENABLE_AFI_DEVICE
|
|
mc_set_forced_coherent_so_dev_cfg(AFIW);
|
|
#endif
|
|
mc_set_forced_coherent_cfg(HDAR);
|
|
mc_set_forced_coherent_cfg(HDAW);
|
|
mc_set_forced_coherent_cfg(SATAR);
|
|
mc_set_forced_coherent_cfg(SATAW);
|
|
mc_set_forced_coherent_cfg(XUSB_HOSTR);
|
|
mc_set_forced_coherent_cfg(XUSB_HOSTW);
|
|
mc_set_forced_coherent_cfg(XUSB_DEVR);
|
|
mc_set_forced_coherent_cfg(XUSB_DEVW);
|
|
mc_set_forced_coherent_cfg(SDMMCRAB);
|
|
mc_set_forced_coherent_cfg(SDMMCWAB);
|
|
|
|
/* Match APEDMAW */
|
|
mc_set_forced_coherent_axid_so_dev_cfg(APEDMAR);
|
|
|
|
/*
|
|
* See bug 200131110 comment #35 - AWID for normal requests
|
|
* is 0x80 and AWID for SO/DEV requests is 0x01
|
|
*/
|
|
mc_set_forced_coherent_axid_so_dev_cfg(APEDMAW);
|
|
mc_set_forced_coherent_cfg(SESRD);
|
|
mc_set_forced_coherent_cfg(SESWR);
|
|
mc_set_forced_coherent_cfg(ETRR);
|
|
mc_set_forced_coherent_cfg(ETRW);
|
|
mc_set_forced_coherent_cfg(AXISR);
|
|
mc_set_forced_coherent_cfg(AXISW);
|
|
mc_set_forced_coherent_cfg(EQOSR);
|
|
mc_set_forced_coherent_cfg(EQOSW);
|
|
mc_set_forced_coherent_cfg(UFSHCR);
|
|
mc_set_forced_coherent_cfg(UFSHCW);
|
|
mc_set_forced_coherent_cfg(BPMPDMAR);
|
|
mc_set_forced_coherent_cfg(BPMPDMAW);
|
|
mc_set_forced_coherent_cfg(AONDMAR);
|
|
mc_set_forced_coherent_cfg(AONDMAW);
|
|
mc_set_forced_coherent_cfg(SCEDMAR);
|
|
mc_set_forced_coherent_cfg(SCEDMAW);
|
|
|
|
/*
|
|
* At this point, ordering can occur at ROC. So, remove PCFIFO's
|
|
* control over ordering requests.
|
|
*
|
|
* Change PCFIFO_*_ORDERED_CLIENT from ORDERED -> UNORDERED for
|
|
* boot and strongly ordered MSS clients
|
|
*/
|
|
val = MC_PCFIFO_CLIENT_CONFIG1_RESET_VAL &
|
|
#if ENABLE_AFI_DEVICE
|
|
mc_set_pcfifo_unordered_boot_so_mss(1, AFIW) &
|
|
#endif
|
|
mc_set_pcfifo_unordered_boot_so_mss(1, HDAW) &
|
|
mc_set_pcfifo_unordered_boot_so_mss(1, SATAW);
|
|
tegra_mc_write_32(MC_PCFIFO_CLIENT_CONFIG1, val);
|
|
|
|
val = MC_PCFIFO_CLIENT_CONFIG2_RESET_VAL &
|
|
mc_set_pcfifo_unordered_boot_so_mss(2, XUSB_HOSTW) &
|
|
mc_set_pcfifo_unordered_boot_so_mss(2, XUSB_DEVW);
|
|
tegra_mc_write_32(MC_PCFIFO_CLIENT_CONFIG2, val);
|
|
|
|
val = MC_PCFIFO_CLIENT_CONFIG3_RESET_VAL &
|
|
mc_set_pcfifo_unordered_boot_so_mss(3, SDMMCWAB);
|
|
tegra_mc_write_32(MC_PCFIFO_CLIENT_CONFIG3, val);
|
|
|
|
val = MC_PCFIFO_CLIENT_CONFIG4_RESET_VAL &
|
|
mc_set_pcfifo_unordered_boot_so_mss(4, SESWR) &
|
|
mc_set_pcfifo_unordered_boot_so_mss(4, ETRW) &
|
|
mc_set_pcfifo_unordered_boot_so_mss(4, AXISW) &
|
|
mc_set_pcfifo_unordered_boot_so_mss(4, EQOSW) &
|
|
mc_set_pcfifo_unordered_boot_so_mss(4, UFSHCW) &
|
|
mc_set_pcfifo_unordered_boot_so_mss(4, BPMPDMAW) &
|
|
mc_set_pcfifo_unordered_boot_so_mss(4, AONDMAW) &
|
|
mc_set_pcfifo_unordered_boot_so_mss(4, SCEDMAW);
|
|
tegra_mc_write_32(MC_PCFIFO_CLIENT_CONFIG4, val);
|
|
|
|
val = MC_PCFIFO_CLIENT_CONFIG5_RESET_VAL &
|
|
mc_set_pcfifo_unordered_boot_so_mss(5, APEDMAW);
|
|
tegra_mc_write_32(MC_PCFIFO_CLIENT_CONFIG5, val);
|
|
|
|
/*
|
|
* At this point, ordering can occur at ROC. SMMU need not
|
|
* reorder any requests.
|
|
*
|
|
* Change SMMU_*_ORDERED_CLIENT from ORDERED -> UNORDERED
|
|
* for boot and strongly ordered MSS clients
|
|
*/
|
|
val = MC_SMMU_CLIENT_CONFIG1_RESET_VAL &
|
|
#if ENABLE_AFI_DEVICE
|
|
mc_set_smmu_unordered_boot_so_mss(1, AFIW) &
|
|
#endif
|
|
mc_set_smmu_unordered_boot_so_mss(1, HDAW) &
|
|
mc_set_smmu_unordered_boot_so_mss(1, SATAW);
|
|
tegra_mc_write_32(MC_SMMU_CLIENT_CONFIG1, val);
|
|
|
|
val = MC_SMMU_CLIENT_CONFIG2_RESET_VAL &
|
|
mc_set_smmu_unordered_boot_so_mss(2, XUSB_HOSTW) &
|
|
mc_set_smmu_unordered_boot_so_mss(2, XUSB_DEVW);
|
|
tegra_mc_write_32(MC_SMMU_CLIENT_CONFIG2, val);
|
|
|
|
val = MC_SMMU_CLIENT_CONFIG3_RESET_VAL &
|
|
mc_set_smmu_unordered_boot_so_mss(3, SDMMCWAB);
|
|
tegra_mc_write_32(MC_SMMU_CLIENT_CONFIG3, val);
|
|
|
|
val = MC_SMMU_CLIENT_CONFIG4_RESET_VAL &
|
|
mc_set_smmu_unordered_boot_so_mss(4, SESWR) &
|
|
mc_set_smmu_unordered_boot_so_mss(4, ETRW) &
|
|
mc_set_smmu_unordered_boot_so_mss(4, AXISW) &
|
|
mc_set_smmu_unordered_boot_so_mss(4, EQOSW) &
|
|
mc_set_smmu_unordered_boot_so_mss(4, UFSHCW) &
|
|
mc_set_smmu_unordered_boot_so_mss(4, BPMPDMAW) &
|
|
mc_set_smmu_unordered_boot_so_mss(4, AONDMAW) &
|
|
mc_set_smmu_unordered_boot_so_mss(4, SCEDMAW);
|
|
tegra_mc_write_32(MC_SMMU_CLIENT_CONFIG4, val);
|
|
|
|
val = MC_SMMU_CLIENT_CONFIG5_RESET_VAL &
|
|
mc_set_smmu_unordered_boot_so_mss(5, APEDMAW);
|
|
tegra_mc_write_32(MC_SMMU_CLIENT_CONFIG5, val);
|
|
|
|
/*
|
|
* Deassert HOTRESET FLUSH_ENABLE for boot and strongly ordered MSS
|
|
* clients to allow memory traffic from all clients to start passing
|
|
* through ROC
|
|
*/
|
|
val = tegra_mc_read_32(MC_CLIENT_HOTRESET_CTRL0);
|
|
assert(val == wdata_0);
|
|
|
|
wdata_0 = MC_CLIENT_HOTRESET_CTRL0_RESET_VAL;
|
|
tegra_mc_write_32(MC_CLIENT_HOTRESET_CTRL0, wdata_0);
|
|
|
|
/* Wait for HOTRESET STATUS to indicate FLUSH_DONE */
|
|
do {
|
|
val = tegra_mc_read_32(MC_CLIENT_HOTRESET_STATUS0);
|
|
} while ((val & wdata_0) != wdata_0);
|
|
|
|
/* Wait one more time due to SW WAR for known legacy issue */
|
|
do {
|
|
val = tegra_mc_read_32(MC_CLIENT_HOTRESET_STATUS0);
|
|
} while ((val & wdata_0) != wdata_0);
|
|
|
|
val = tegra_mc_read_32(MC_CLIENT_HOTRESET_CTRL1);
|
|
assert(val == wdata_1);
|
|
|
|
wdata_1 = MC_CLIENT_HOTRESET_CTRL1_RESET_VAL;
|
|
tegra_mc_write_32(MC_CLIENT_HOTRESET_CTRL1, wdata_1);
|
|
|
|
/* Wait for HOTRESET STATUS to indicate FLUSH_DONE */
|
|
do {
|
|
val = tegra_mc_read_32(MC_CLIENT_HOTRESET_STATUS1);
|
|
} while ((val & wdata_1) != wdata_1);
|
|
|
|
/* Wait one more time due to SW WAR for known legacy issue */
|
|
do {
|
|
val = tegra_mc_read_32(MC_CLIENT_HOTRESET_STATUS1);
|
|
} while ((val & wdata_1) != wdata_1);
|
|
|
|
#endif
|
|
}
|
|
|
|
static void tegra_memctrl_set_overrides(void)
|
|
{
|
|
tegra_mc_settings_t *plat_mc_settings = tegra_get_mc_settings();
|
|
const mc_txn_override_cfg_t *mc_txn_override_cfgs;
|
|
uint32_t num_txn_override_cfgs;
|
|
uint32_t i, val;
|
|
|
|
/* Get the settings from the platform */
|
|
assert(plat_mc_settings);
|
|
mc_txn_override_cfgs = plat_mc_settings->txn_override_cfg;
|
|
num_txn_override_cfgs = plat_mc_settings->num_txn_override_cfgs;
|
|
|
|
/*
|
|
* Set the MC_TXN_OVERRIDE registers for write clients.
|
|
*/
|
|
if ((tegra_chipid_is_t186()) &&
|
|
(!tegra_platform_is_silicon() ||
|
|
(tegra_platform_is_silicon() && (tegra_get_chipid_minor() == 1)))) {
|
|
|
|
/*
|
|
* GPU and NVENC settings for Tegra186 simulation and
|
|
* Silicon rev. A01
|
|
*/
|
|
val = tegra_mc_read_32(MC_TXN_OVERRIDE_CONFIG_GPUSWR);
|
|
val &= ~MC_TXN_OVERRIDE_CGID_TAG_MASK;
|
|
tegra_mc_write_32(MC_TXN_OVERRIDE_CONFIG_GPUSWR,
|
|
val | MC_TXN_OVERRIDE_CGID_TAG_ZERO);
|
|
|
|
val = tegra_mc_read_32(MC_TXN_OVERRIDE_CONFIG_GPUSWR2);
|
|
val &= ~MC_TXN_OVERRIDE_CGID_TAG_MASK;
|
|
tegra_mc_write_32(MC_TXN_OVERRIDE_CONFIG_GPUSWR2,
|
|
val | MC_TXN_OVERRIDE_CGID_TAG_ZERO);
|
|
|
|
val = tegra_mc_read_32(MC_TXN_OVERRIDE_CONFIG_NVENCSWR);
|
|
val &= ~MC_TXN_OVERRIDE_CGID_TAG_MASK;
|
|
tegra_mc_write_32(MC_TXN_OVERRIDE_CONFIG_NVENCSWR,
|
|
val | MC_TXN_OVERRIDE_CGID_TAG_CLIENT_AXI_ID);
|
|
|
|
} else {
|
|
|
|
/*
|
|
* Settings for Tegra186 silicon rev. A02 and onwards.
|
|
*/
|
|
for (i = 0; i < num_txn_override_cfgs; i++) {
|
|
val = tegra_mc_read_32(mc_txn_override_cfgs[i].offset);
|
|
val &= ~MC_TXN_OVERRIDE_CGID_TAG_MASK;
|
|
tegra_mc_write_32(mc_txn_override_cfgs[i].offset,
|
|
val | mc_txn_override_cfgs[i].cgid_tag);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Init Memory controller during boot.
|
|
*/
|
|
void tegra_memctrl_setup(void)
|
|
{
|
|
uint32_t val;
|
|
const uint32_t *mc_streamid_override_regs;
|
|
uint32_t num_streamid_override_regs;
|
|
const mc_streamid_security_cfg_t *mc_streamid_sec_cfgs;
|
|
uint32_t num_streamid_sec_cfgs;
|
|
tegra_mc_settings_t *plat_mc_settings = tegra_get_mc_settings();
|
|
uint32_t i;
|
|
|
|
INFO("Tegra Memory Controller (v2)\n");
|
|
|
|
#if ENABLE_SMMU_DEVICE
|
|
/* Program the SMMU pagesize */
|
|
tegra_smmu_init();
|
|
#endif
|
|
/* Get the settings from the platform */
|
|
assert(plat_mc_settings);
|
|
mc_streamid_override_regs = plat_mc_settings->streamid_override_cfg;
|
|
num_streamid_override_regs = plat_mc_settings->num_streamid_override_cfgs;
|
|
mc_streamid_sec_cfgs = plat_mc_settings->streamid_security_cfg;
|
|
num_streamid_sec_cfgs = plat_mc_settings->num_streamid_security_cfgs;
|
|
|
|
/* Program all the Stream ID overrides */
|
|
for (i = 0; i < num_streamid_override_regs; i++)
|
|
tegra_mc_streamid_write_32(mc_streamid_override_regs[i],
|
|
MC_STREAM_ID_MAX);
|
|
|
|
/* Program the security config settings for all Stream IDs */
|
|
for (i = 0; i < num_streamid_sec_cfgs; i++) {
|
|
val = mc_streamid_sec_cfgs[i].override_enable << 16 |
|
|
mc_streamid_sec_cfgs[i].override_client_inputs << 8 |
|
|
mc_streamid_sec_cfgs[i].override_client_ns_flag << 0;
|
|
tegra_mc_streamid_write_32(mc_streamid_sec_cfgs[i].offset, val);
|
|
}
|
|
|
|
/*
|
|
* All requests at boot time, and certain requests during
|
|
* normal run time, are physically addressed and must bypass
|
|
* the SMMU. The client hub logic implements a hardware bypass
|
|
* path around the Translation Buffer Units (TBU). During
|
|
* boot-time, the SMMU_BYPASS_CTRL register (which defaults to
|
|
* TBU_BYPASS mode) will be used to steer all requests around
|
|
* the uninitialized TBUs. During normal operation, this register
|
|
* is locked into TBU_BYPASS_SID config, which routes requests
|
|
* with special StreamID 0x7f on the bypass path and all others
|
|
* through the selected TBU. This is done to disable SMMU Bypass
|
|
* mode, as it could be used to circumvent SMMU security checks.
|
|
*/
|
|
tegra_mc_write_32(MC_SMMU_BYPASS_CONFIG,
|
|
MC_SMMU_BYPASS_CONFIG_SETTINGS);
|
|
|
|
/*
|
|
* Re-configure MSS to allow ROC to deal with ordering of the
|
|
* Memory Controller traffic. This is needed as the Memory Controller
|
|
* boots with MSS having all control, but ROC provides a performance
|
|
* boost as compared to MSS.
|
|
*/
|
|
tegra_memctrl_reconfig_mss_clients();
|
|
|
|
/* Program overrides for MC transactions */
|
|
tegra_memctrl_set_overrides();
|
|
}
|
|
|
|
/*
|
|
* Restore Memory Controller settings after "System Suspend"
|
|
*/
|
|
void tegra_memctrl_restore_settings(void)
|
|
{
|
|
/*
|
|
* Re-configure MSS to allow ROC to deal with ordering of the
|
|
* Memory Controller traffic. This is needed as the Memory Controller
|
|
* resets during System Suspend with MSS having all control, but ROC
|
|
* provides a performance boost as compared to MSS.
|
|
*/
|
|
tegra_memctrl_reconfig_mss_clients();
|
|
|
|
/* Program overrides for MC transactions */
|
|
tegra_memctrl_set_overrides();
|
|
|
|
/* video memory carveout region */
|
|
if (video_mem_base) {
|
|
tegra_mc_write_32(MC_VIDEO_PROTECT_BASE_LO,
|
|
(uint32_t)video_mem_base);
|
|
tegra_mc_write_32(MC_VIDEO_PROTECT_BASE_HI,
|
|
(uint32_t)(video_mem_base >> 32));
|
|
tegra_mc_write_32(MC_VIDEO_PROTECT_SIZE_MB, video_mem_size_mb);
|
|
|
|
/*
|
|
* MCE propagates the VideoMem configuration values across the
|
|
* CCPLEX.
|
|
*/
|
|
mce_update_gsc_videomem();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Secure the BL31 DRAM aperture.
|
|
*
|
|
* phys_base = physical base of TZDRAM aperture
|
|
* size_in_bytes = size of aperture in bytes
|
|
*/
|
|
void tegra_memctrl_tzdram_setup(uint64_t phys_base, uint32_t size_in_bytes)
|
|
{
|
|
/*
|
|
* Setup the Memory controller to allow only secure accesses to
|
|
* the TZDRAM carveout
|
|
*/
|
|
INFO("Configuring TrustZone DRAM Memory Carveout\n");
|
|
|
|
tegra_mc_write_32(MC_SECURITY_CFG0_0, (uint32_t)phys_base);
|
|
tegra_mc_write_32(MC_SECURITY_CFG3_0, (uint32_t)(phys_base >> 32));
|
|
tegra_mc_write_32(MC_SECURITY_CFG1_0, size_in_bytes >> 20);
|
|
|
|
/*
|
|
* When TZ encryption enabled,
|
|
* We need setup TZDRAM before CPU to access TZ Carveout,
|
|
* otherwise CPU will fetch non-decrypted data.
|
|
* So save TZDRAM setting for retore by SC7 resume FW.
|
|
*/
|
|
|
|
mmio_write_32(TEGRA_SCRATCH_BASE + SECURE_SCRATCH_RSV55_LO,
|
|
tegra_mc_read_32(MC_SECURITY_CFG0_0));
|
|
mmio_write_32(TEGRA_SCRATCH_BASE + SECURE_SCRATCH_RSV55_HI,
|
|
tegra_mc_read_32(MC_SECURITY_CFG3_0));
|
|
mmio_write_32(TEGRA_SCRATCH_BASE + SECURE_SCRATCH_RSV54_HI,
|
|
tegra_mc_read_32(MC_SECURITY_CFG1_0));
|
|
|
|
/*
|
|
* MCE propagates the security configuration values across the
|
|
* CCPLEX.
|
|
*/
|
|
mce_update_gsc_tzdram();
|
|
}
|
|
|
|
/*
|
|
* Secure the BL31 TZRAM aperture.
|
|
*
|
|
* phys_base = physical base of TZRAM aperture
|
|
* size_in_bytes = size of aperture in bytes
|
|
*/
|
|
void tegra_memctrl_tzram_setup(uint64_t phys_base, uint32_t size_in_bytes)
|
|
{
|
|
uint32_t index;
|
|
uint32_t total_128kb_blocks = size_in_bytes >> 17;
|
|
uint32_t residual_4kb_blocks = (size_in_bytes & (uint32_t)0x1FFFF) >> 12;
|
|
uint32_t val;
|
|
|
|
INFO("Configuring TrustZone SRAM Memory Carveout\n");
|
|
|
|
/*
|
|
* Reset the access configuration registers to restrict access
|
|
* to the TZRAM aperture
|
|
*/
|
|
for (index = MC_TZRAM_CLIENT_ACCESS_CFG0;
|
|
index < ((uint32_t)MC_TZRAM_CARVEOUT_CFG + (uint32_t)MC_GSC_CONFIG_REGS_SIZE);
|
|
index += 4U) {
|
|
tegra_mc_write_32(index, 0);
|
|
}
|
|
|
|
/*
|
|
* Set the TZRAM base. TZRAM base must be 4k aligned, at least.
|
|
*/
|
|
assert((phys_base & (uint64_t)0xFFF) == 0U);
|
|
tegra_mc_write_32(MC_TZRAM_BASE_LO, (uint32_t)phys_base);
|
|
tegra_mc_write_32(MC_TZRAM_BASE_HI,
|
|
(uint32_t)(phys_base >> 32) & MC_GSC_BASE_HI_MASK);
|
|
|
|
/*
|
|
* Set the TZRAM size
|
|
*
|
|
* total size = (number of 128KB blocks) + (number of remaining 4KB
|
|
* blocks)
|
|
*
|
|
*/
|
|
val = (residual_4kb_blocks << MC_GSC_SIZE_RANGE_4KB_SHIFT) |
|
|
total_128kb_blocks;
|
|
tegra_mc_write_32(MC_TZRAM_SIZE, val);
|
|
|
|
/*
|
|
* Lock the configuration settings by disabling TZ-only lock
|
|
* and locking the configuration against any future changes
|
|
* at all.
|
|
*/
|
|
val = tegra_mc_read_32(MC_TZRAM_CARVEOUT_CFG);
|
|
val &= ~MC_GSC_ENABLE_TZ_LOCK_BIT;
|
|
val |= MC_GSC_LOCK_CFG_SETTINGS_BIT;
|
|
tegra_mc_write_32(MC_TZRAM_CARVEOUT_CFG, val);
|
|
|
|
/*
|
|
* MCE propagates the security configuration values across the
|
|
* CCPLEX.
|
|
*/
|
|
mce_update_gsc_tzram();
|
|
}
|
|
|
|
static void tegra_lock_videomem_nonoverlap(uint64_t phys_base,
|
|
uint64_t size_in_bytes)
|
|
{
|
|
uint32_t index;
|
|
uint64_t total_128kb_blocks = size_in_bytes >> 17;
|
|
uint64_t residual_4kb_blocks = (size_in_bytes & (uint32_t)0x1FFFF) >> 12;
|
|
uint64_t val;
|
|
|
|
/*
|
|
* Reset the access configuration registers to restrict access to
|
|
* old Videomem aperture
|
|
*/
|
|
for (index = MC_VIDEO_PROTECT_CLEAR_ACCESS_CFG0;
|
|
index < ((uint32_t)MC_VIDEO_PROTECT_CLEAR_ACCESS_CFG0 + (uint32_t)MC_GSC_CONFIG_REGS_SIZE);
|
|
index += 4U) {
|
|
tegra_mc_write_32(index, 0);
|
|
}
|
|
|
|
/*
|
|
* Set the base. It must be 4k aligned, at least.
|
|
*/
|
|
assert((phys_base & (uint64_t)0xFFF) == 0U);
|
|
tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_BASE_LO, (uint32_t)phys_base);
|
|
tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_BASE_HI,
|
|
(uint32_t)(phys_base >> 32) & (uint32_t)MC_GSC_BASE_HI_MASK);
|
|
|
|
/*
|
|
* Set the aperture size
|
|
*
|
|
* total size = (number of 128KB blocks) + (number of remaining 4KB
|
|
* blocks)
|
|
*
|
|
*/
|
|
val = (uint32_t)((residual_4kb_blocks << MC_GSC_SIZE_RANGE_4KB_SHIFT) |
|
|
total_128kb_blocks);
|
|
tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_SIZE, (uint32_t)val);
|
|
|
|
/*
|
|
* Lock the configuration settings by enabling TZ-only lock and
|
|
* locking the configuration against any future changes from NS
|
|
* world.
|
|
*/
|
|
tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_CFG,
|
|
(uint32_t)MC_GSC_ENABLE_TZ_LOCK_BIT);
|
|
|
|
/*
|
|
* MCE propagates the GSC configuration values across the
|
|
* CCPLEX.
|
|
*/
|
|
}
|
|
|
|
static void tegra_unlock_videomem_nonoverlap(void)
|
|
{
|
|
/* Clear the base */
|
|
tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_BASE_LO, 0);
|
|
tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_BASE_HI, 0);
|
|
|
|
/* Clear the size */
|
|
tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_SIZE, 0);
|
|
}
|
|
|
|
static void tegra_clear_videomem(uintptr_t non_overlap_area_start,
|
|
unsigned long long non_overlap_area_size)
|
|
{
|
|
/*
|
|
* Map the NS memory first, clean it and then unmap it.
|
|
*/
|
|
mmap_add_dynamic_region(non_overlap_area_start, /* PA */
|
|
non_overlap_area_start, /* VA */
|
|
non_overlap_area_size, /* size */
|
|
MT_NS | MT_RW | MT_EXECUTE_NEVER); /* attrs */
|
|
|
|
zero_normalmem((void *)non_overlap_area_start, non_overlap_area_size);
|
|
flush_dcache_range(non_overlap_area_start, non_overlap_area_size);
|
|
|
|
mmap_remove_dynamic_region(non_overlap_area_start,
|
|
non_overlap_area_size);
|
|
}
|
|
|
|
/*
|
|
* Program the Video Memory carveout region
|
|
*
|
|
* phys_base = physical base of aperture
|
|
* size_in_bytes = size of aperture in bytes
|
|
*/
|
|
void tegra_memctrl_videomem_setup(uint64_t phys_base, uint32_t size_in_bytes)
|
|
{
|
|
uintptr_t vmem_end_old = video_mem_base + (video_mem_size_mb << 20);
|
|
uintptr_t vmem_end_new = phys_base + size_in_bytes;
|
|
uint32_t regval;
|
|
unsigned long long non_overlap_area_size;
|
|
|
|
/*
|
|
* The GPU is the user of the Video Memory region. In order to
|
|
* transition to the new memory region smoothly, we program the
|
|
* new base/size ONLY if the GPU is in reset mode.
|
|
*/
|
|
regval = mmio_read_32(TEGRA_CAR_RESET_BASE + TEGRA_GPU_RESET_REG_OFFSET);
|
|
if ((regval & GPU_RESET_BIT) == 0U) {
|
|
ERROR("GPU not in reset! Video Memory setup failed\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Setup the Memory controller to restrict CPU accesses to the Video
|
|
* Memory region
|
|
*/
|
|
INFO("Configuring Video Memory Carveout\n");
|
|
|
|
/*
|
|
* Configure Memory Controller directly for the first time.
|
|
*/
|
|
if (video_mem_base == 0U)
|
|
goto done;
|
|
|
|
/*
|
|
* Lock the non overlapping memory being cleared so that other masters
|
|
* do not accidently write to it. The memory would be unlocked once
|
|
* the non overlapping region is cleared and the new memory
|
|
* settings take effect.
|
|
*/
|
|
tegra_lock_videomem_nonoverlap(video_mem_base,
|
|
video_mem_size_mb << 20);
|
|
|
|
/*
|
|
* Clear the old regions now being exposed. The following cases
|
|
* can occur -
|
|
*
|
|
* 1. clear whole old region (no overlap with new region)
|
|
* 2. clear old sub-region below new base
|
|
* 3. clear old sub-region above new end
|
|
*/
|
|
INFO("Cleaning previous Video Memory Carveout\n");
|
|
|
|
if (phys_base > vmem_end_old || video_mem_base > vmem_end_new) {
|
|
tegra_clear_videomem(video_mem_base,
|
|
(uint64_t)video_mem_size_mb << 20);
|
|
} else {
|
|
if (video_mem_base < phys_base) {
|
|
non_overlap_area_size = phys_base - video_mem_base;
|
|
tegra_clear_videomem(video_mem_base, non_overlap_area_size);
|
|
}
|
|
if (vmem_end_old > vmem_end_new) {
|
|
non_overlap_area_size = vmem_end_old - vmem_end_new;
|
|
tegra_clear_videomem(vmem_end_new, non_overlap_area_size);
|
|
}
|
|
}
|
|
|
|
done:
|
|
/* program the Videomem aperture */
|
|
tegra_mc_write_32(MC_VIDEO_PROTECT_BASE_LO, (uint32_t)phys_base);
|
|
tegra_mc_write_32(MC_VIDEO_PROTECT_BASE_HI,
|
|
(uint32_t)(phys_base >> 32));
|
|
tegra_mc_write_32(MC_VIDEO_PROTECT_SIZE_MB, size_in_bytes >> 20);
|
|
|
|
/* unlock the previous locked nonoverlapping aperture */
|
|
tegra_unlock_videomem_nonoverlap();
|
|
|
|
/* store new values */
|
|
video_mem_base = phys_base;
|
|
video_mem_size_mb = size_in_bytes >> 20;
|
|
|
|
/*
|
|
* MCE propagates the VideoMem configuration values across the
|
|
* CCPLEX.
|
|
*/
|
|
mce_update_gsc_videomem();
|
|
}
|
|
|
|
/*
|
|
* This feature exists only for v1 of the Tegra Memory Controller.
|
|
*/
|
|
void tegra_memctrl_disable_ahb_redirection(void)
|
|
{
|
|
; /* do nothing */
|
|
}
|