arm-trusted-firmware/services/spd/trusty/trusty.c
Varun Wadekar fc19818874 spd: trusty: allow clients to retrieve service UUID
This patch implements support for the 64-bit and 32-bit versions of
0xBF00FF01 SMC function ID, as documented by the SMCCC, to allow
non-secure world clients to query SPD's UUID.

In order to service this FID, the Trusty SPD now increases the range
of SMCs that it services. To restrict Trusty from receiving the extra
SMC FIDs, this patch drops any unsupported FID.

Verified with TFTF tests for UID query and internal gtest for Trusty.

Change-Id: If96fe4993f7e641595cfe67cc6b4210a0d52403f
Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
2020-08-31 12:56:49 -07:00

540 lines
14 KiB
C

/*
* Copyright (c) 2016-2019, ARM Limited and Contributors. All rights reserved.
* Copyright (c) 2020, NVIDIA Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <lib/xlat_tables/xlat_tables_v2.h>
#include <stdbool.h>
#include <string.h>
#include <arch_helpers.h>
#include <bl31/bl31.h>
#include <bl31/interrupt_mgmt.h>
#include <common/bl_common.h>
#include <common/debug.h>
#include <common/runtime_svc.h>
#include <lib/el3_runtime/context_mgmt.h>
#include <lib/smccc.h>
#include <plat/common/platform.h>
#include <tools_share/uuid.h>
#include "sm_err.h"
#include "smcall.h"
/* Trusty UID: RFC-4122 compliant UUID version 4 */
DEFINE_SVC_UUID2(trusty_uuid,
0x40ee25f0, 0xa2bc, 0x304c, 0x8c, 0x4c,
0xa1, 0x73, 0xc5, 0x7d, 0x8a, 0xf1);
/* macro to check if Hypervisor is enabled in the HCR_EL2 register */
#define HYP_ENABLE_FLAG 0x286001U
/* length of Trusty's input parameters (in bytes) */
#define TRUSTY_PARAMS_LEN_BYTES (4096U * 2)
struct trusty_stack {
uint8_t space[PLATFORM_STACK_SIZE] __aligned(16);
uint32_t end;
};
struct trusty_cpu_ctx {
cpu_context_t cpu_ctx;
void *saved_sp;
uint32_t saved_security_state;
int32_t fiq_handler_active;
uint64_t fiq_handler_pc;
uint64_t fiq_handler_cpsr;
uint64_t fiq_handler_sp;
uint64_t fiq_pc;
uint64_t fiq_cpsr;
uint64_t fiq_sp_el1;
gp_regs_t fiq_gpregs;
struct trusty_stack secure_stack;
};
struct smc_args {
uint64_t r0;
uint64_t r1;
uint64_t r2;
uint64_t r3;
uint64_t r4;
uint64_t r5;
uint64_t r6;
uint64_t r7;
};
static struct trusty_cpu_ctx trusty_cpu_ctx[PLATFORM_CORE_COUNT];
struct smc_args trusty_init_context_stack(void **sp, void *new_stack);
struct smc_args trusty_context_switch_helper(void **sp, void *smc_params);
static uint32_t current_vmid;
static struct trusty_cpu_ctx *get_trusty_ctx(void)
{
return &trusty_cpu_ctx[plat_my_core_pos()];
}
static bool is_hypervisor_mode(void)
{
uint64_t hcr = read_hcr();
return ((hcr & HYP_ENABLE_FLAG) != 0U) ? true : false;
}
static struct smc_args trusty_context_switch(uint32_t security_state, uint64_t r0,
uint64_t r1, uint64_t r2, uint64_t r3)
{
struct smc_args args, ret_args;
struct trusty_cpu_ctx *ctx = get_trusty_ctx();
struct trusty_cpu_ctx *ctx_smc;
assert(ctx->saved_security_state != security_state);
args.r7 = 0;
if (is_hypervisor_mode()) {
/* According to the ARM DEN0028A spec, VMID is stored in x7 */
ctx_smc = cm_get_context(NON_SECURE);
assert(ctx_smc != NULL);
args.r7 = SMC_GET_GP(ctx_smc, CTX_GPREG_X7);
}
/* r4, r5, r6 reserved for future use. */
args.r6 = 0;
args.r5 = 0;
args.r4 = 0;
args.r3 = r3;
args.r2 = r2;
args.r1 = r1;
args.r0 = r0;
/*
* To avoid the additional overhead in PSCI flow, skip FP context
* saving/restoring in case of CPU suspend and resume, assuming that
* when it's needed the PSCI caller has preserved FP context before
* going here.
*/
if (r0 != SMC_FC_CPU_SUSPEND && r0 != SMC_FC_CPU_RESUME)
fpregs_context_save(get_fpregs_ctx(cm_get_context(security_state)));
cm_el1_sysregs_context_save(security_state);
ctx->saved_security_state = security_state;
ret_args = trusty_context_switch_helper(&ctx->saved_sp, &args);
assert(ctx->saved_security_state == ((security_state == 0U) ? 1U : 0U));
cm_el1_sysregs_context_restore(security_state);
if (r0 != SMC_FC_CPU_SUSPEND && r0 != SMC_FC_CPU_RESUME)
fpregs_context_restore(get_fpregs_ctx(cm_get_context(security_state)));
cm_set_next_eret_context(security_state);
return ret_args;
}
static uint64_t trusty_fiq_handler(uint32_t id,
uint32_t flags,
void *handle,
void *cookie)
{
struct smc_args ret;
struct trusty_cpu_ctx *ctx = get_trusty_ctx();
assert(!is_caller_secure(flags));
ret = trusty_context_switch(NON_SECURE, SMC_FC_FIQ_ENTER, 0, 0, 0);
if (ret.r0 != 0U) {
SMC_RET0(handle);
}
if (ctx->fiq_handler_active != 0) {
INFO("%s: fiq handler already active\n", __func__);
SMC_RET0(handle);
}
ctx->fiq_handler_active = 1;
(void)memcpy(&ctx->fiq_gpregs, get_gpregs_ctx(handle), sizeof(ctx->fiq_gpregs));
ctx->fiq_pc = SMC_GET_EL3(handle, CTX_ELR_EL3);
ctx->fiq_cpsr = SMC_GET_EL3(handle, CTX_SPSR_EL3);
ctx->fiq_sp_el1 = read_ctx_reg(get_el1_sysregs_ctx(handle), CTX_SP_EL1);
write_ctx_reg(get_el1_sysregs_ctx(handle), CTX_SP_EL1, ctx->fiq_handler_sp);
cm_set_elr_spsr_el3(NON_SECURE, ctx->fiq_handler_pc, (uint32_t)ctx->fiq_handler_cpsr);
SMC_RET0(handle);
}
static uint64_t trusty_set_fiq_handler(void *handle, uint64_t cpu,
uint64_t handler, uint64_t stack)
{
struct trusty_cpu_ctx *ctx;
if (cpu >= (uint64_t)PLATFORM_CORE_COUNT) {
ERROR("%s: cpu %lld >= %d\n", __func__, cpu, PLATFORM_CORE_COUNT);
return (uint64_t)SM_ERR_INVALID_PARAMETERS;
}
ctx = &trusty_cpu_ctx[cpu];
ctx->fiq_handler_pc = handler;
ctx->fiq_handler_cpsr = SMC_GET_EL3(handle, CTX_SPSR_EL3);
ctx->fiq_handler_sp = stack;
SMC_RET1(handle, 0);
}
static uint64_t trusty_get_fiq_regs(void *handle)
{
struct trusty_cpu_ctx *ctx = get_trusty_ctx();
uint64_t sp_el0 = read_ctx_reg(&ctx->fiq_gpregs, CTX_GPREG_SP_EL0);
SMC_RET4(handle, ctx->fiq_pc, ctx->fiq_cpsr, sp_el0, ctx->fiq_sp_el1);
}
static uint64_t trusty_fiq_exit(void *handle, uint64_t x1, uint64_t x2, uint64_t x3)
{
struct smc_args ret;
struct trusty_cpu_ctx *ctx = get_trusty_ctx();
if (ctx->fiq_handler_active == 0) {
NOTICE("%s: fiq handler not active\n", __func__);
SMC_RET1(handle, (uint64_t)SM_ERR_INVALID_PARAMETERS);
}
ret = trusty_context_switch(NON_SECURE, SMC_FC_FIQ_EXIT, 0, 0, 0);
if (ret.r0 != 1U) {
INFO("%s(%p) SMC_FC_FIQ_EXIT returned unexpected value, %lld\n",
__func__, handle, ret.r0);
}
/*
* Restore register state to state recorded on fiq entry.
*
* x0, sp_el1, pc and cpsr need to be restored because el1 cannot
* restore them.
*
* x1-x4 and x8-x17 need to be restored here because smc_handler64
* corrupts them (el1 code also restored them).
*/
(void)memcpy(get_gpregs_ctx(handle), &ctx->fiq_gpregs, sizeof(ctx->fiq_gpregs));
ctx->fiq_handler_active = 0;
write_ctx_reg(get_el1_sysregs_ctx(handle), CTX_SP_EL1, ctx->fiq_sp_el1);
cm_set_elr_spsr_el3(NON_SECURE, ctx->fiq_pc, (uint32_t)ctx->fiq_cpsr);
SMC_RET0(handle);
}
static uintptr_t trusty_smc_handler(uint32_t smc_fid,
u_register_t x1,
u_register_t x2,
u_register_t x3,
u_register_t x4,
void *cookie,
void *handle,
u_register_t flags)
{
struct smc_args ret;
uint32_t vmid = 0U;
entry_point_info_t *ep_info = bl31_plat_get_next_image_ep_info(SECURE);
/*
* Return success for SET_ROT_PARAMS if Trusty is not present, as
* Verified Boot is not even supported and returning success here
* would not compromise the boot process.
*/
if ((ep_info == NULL) && (smc_fid == SMC_YC_SET_ROT_PARAMS)) {
SMC_RET1(handle, 0);
} else if (ep_info == NULL) {
SMC_RET1(handle, SMC_UNK);
} else {
; /* do nothing */
}
if (is_caller_secure(flags)) {
if (smc_fid == SMC_YC_NS_RETURN) {
ret = trusty_context_switch(SECURE, x1, 0, 0, 0);
SMC_RET8(handle, ret.r0, ret.r1, ret.r2, ret.r3,
ret.r4, ret.r5, ret.r6, ret.r7);
}
INFO("%s (0x%x, 0x%lx, 0x%lx, 0x%lx, 0x%lx, %p, %p, 0x%lx) \
cpu %d, unknown smc\n",
__func__, smc_fid, x1, x2, x3, x4, cookie, handle, flags,
plat_my_core_pos());
SMC_RET1(handle, SMC_UNK);
} else {
switch (smc_fid) {
case SMC_FC64_GET_UUID:
case SMC_FC_GET_UUID:
/* provide the UUID for the service to the client */
SMC_UUID_RET(handle, trusty_uuid);
break;
case SMC_FC64_SET_FIQ_HANDLER:
return trusty_set_fiq_handler(handle, x1, x2, x3);
case SMC_FC64_GET_FIQ_REGS:
return trusty_get_fiq_regs(handle);
case SMC_FC_FIQ_EXIT:
return trusty_fiq_exit(handle, x1, x2, x3);
default:
/* Not all OENs greater than SMC_ENTITY_SECURE_MONITOR are supported */
if (SMC_ENTITY(smc_fid) > SMC_ENTITY_SECURE_MONITOR) {
VERBOSE("%s: unsupported SMC FID (0x%x)\n", __func__, smc_fid);
SMC_RET1(handle, SMC_UNK);
}
if (is_hypervisor_mode())
vmid = SMC_GET_GP(handle, CTX_GPREG_X7);
if ((current_vmid != 0) && (current_vmid != vmid)) {
/* This message will cause SMC mechanism
* abnormal in multi-guest environment.
* Change it to WARN in case you need it.
*/
VERBOSE("Previous SMC not finished.\n");
SMC_RET1(handle, SM_ERR_BUSY);
}
current_vmid = vmid;
ret = trusty_context_switch(NON_SECURE, smc_fid, x1,
x2, x3);
current_vmid = 0;
SMC_RET1(handle, ret.r0);
}
}
}
static int32_t trusty_init(void)
{
entry_point_info_t *ep_info;
struct smc_args zero_args = {0};
struct trusty_cpu_ctx *ctx = get_trusty_ctx();
uint32_t cpu = plat_my_core_pos();
uint64_t reg_width = GET_RW(read_ctx_reg(get_el3state_ctx(&ctx->cpu_ctx),
CTX_SPSR_EL3));
/*
* Get information about the Trusty image. Its absence is a critical
* failure.
*/
ep_info = bl31_plat_get_next_image_ep_info(SECURE);
assert(ep_info != NULL);
fpregs_context_save(get_fpregs_ctx(cm_get_context(NON_SECURE)));
cm_el1_sysregs_context_save(NON_SECURE);
cm_set_context(&ctx->cpu_ctx, SECURE);
cm_init_my_context(ep_info);
/*
* Adjust secondary cpu entry point for 32 bit images to the
* end of exception vectors
*/
if ((cpu != 0U) && (reg_width == MODE_RW_32)) {
INFO("trusty: cpu %d, adjust entry point to 0x%lx\n",
cpu, ep_info->pc + (1U << 5));
cm_set_elr_el3(SECURE, ep_info->pc + (1U << 5));
}
cm_el1_sysregs_context_restore(SECURE);
fpregs_context_restore(get_fpregs_ctx(cm_get_context(SECURE)));
cm_set_next_eret_context(SECURE);
ctx->saved_security_state = ~0U; /* initial saved state is invalid */
(void)trusty_init_context_stack(&ctx->saved_sp, &ctx->secure_stack.end);
(void)trusty_context_switch_helper(&ctx->saved_sp, &zero_args);
cm_el1_sysregs_context_restore(NON_SECURE);
fpregs_context_restore(get_fpregs_ctx(cm_get_context(NON_SECURE)));
cm_set_next_eret_context(NON_SECURE);
return 1;
}
static void trusty_cpu_suspend(uint32_t off)
{
struct smc_args ret;
ret = trusty_context_switch(NON_SECURE, SMC_FC_CPU_SUSPEND, off, 0, 0);
if (ret.r0 != 0U) {
INFO("%s: cpu %d, SMC_FC_CPU_SUSPEND returned unexpected value, %lld\n",
__func__, plat_my_core_pos(), ret.r0);
}
}
static void trusty_cpu_resume(uint32_t on)
{
struct smc_args ret;
ret = trusty_context_switch(NON_SECURE, SMC_FC_CPU_RESUME, on, 0, 0);
if (ret.r0 != 0U) {
INFO("%s: cpu %d, SMC_FC_CPU_RESUME returned unexpected value, %lld\n",
__func__, plat_my_core_pos(), ret.r0);
}
}
static int32_t trusty_cpu_off_handler(u_register_t max_off_lvl)
{
trusty_cpu_suspend(max_off_lvl);
return 0;
}
static void trusty_cpu_on_finish_handler(u_register_t max_off_lvl)
{
struct trusty_cpu_ctx *ctx = get_trusty_ctx();
if (ctx->saved_sp == NULL) {
(void)trusty_init();
} else {
trusty_cpu_resume(max_off_lvl);
}
}
static void trusty_cpu_suspend_handler(u_register_t max_off_lvl)
{
trusty_cpu_suspend(max_off_lvl);
}
static void trusty_cpu_suspend_finish_handler(u_register_t max_off_lvl)
{
trusty_cpu_resume(max_off_lvl);
}
static const spd_pm_ops_t trusty_pm = {
.svc_off = trusty_cpu_off_handler,
.svc_suspend = trusty_cpu_suspend_handler,
.svc_on_finish = trusty_cpu_on_finish_handler,
.svc_suspend_finish = trusty_cpu_suspend_finish_handler,
};
void plat_trusty_set_boot_args(aapcs64_params_t *args);
#if !defined(TSP_SEC_MEM_SIZE) && defined(BL32_MEM_SIZE)
#define TSP_SEC_MEM_SIZE BL32_MEM_SIZE
#endif
#ifdef TSP_SEC_MEM_SIZE
#pragma weak plat_trusty_set_boot_args
void plat_trusty_set_boot_args(aapcs64_params_t *args)
{
args->arg0 = TSP_SEC_MEM_SIZE;
}
#endif
static int32_t trusty_setup(void)
{
entry_point_info_t *ep_info;
uint32_t instr;
uint32_t flags;
int32_t ret;
bool aarch32 = false;
/* Get trusty's entry point info */
ep_info = bl31_plat_get_next_image_ep_info(SECURE);
if (ep_info == NULL) {
VERBOSE("Trusty image missing.\n");
return -1;
}
/* memmap first page of trusty's code memory before peeking */
ret = mmap_add_dynamic_region(ep_info->pc, /* PA */
ep_info->pc, /* VA */
PAGE_SIZE, /* size */
MT_SECURE | MT_RW_DATA); /* attrs */
assert(ret == 0);
/* peek into trusty's code to see if we have a 32-bit or 64-bit image */
instr = *(uint32_t *)ep_info->pc;
if (instr >> 24 == 0xeaU) {
INFO("trusty: Found 32 bit image\n");
aarch32 = true;
} else if (instr >> 8 == 0xd53810U || instr >> 16 == 0x9400U) {
INFO("trusty: Found 64 bit image\n");
} else {
ERROR("trusty: Found unknown image, 0x%x\n", instr);
return -1;
}
/* unmap trusty's memory page */
(void)mmap_remove_dynamic_region(ep_info->pc, PAGE_SIZE);
SET_PARAM_HEAD(ep_info, PARAM_EP, VERSION_1, SECURE | EP_ST_ENABLE);
if (!aarch32)
ep_info->spsr = SPSR_64(MODE_EL1, MODE_SP_ELX,
DISABLE_ALL_EXCEPTIONS);
else
ep_info->spsr = SPSR_MODE32(MODE32_svc, SPSR_T_ARM,
SPSR_E_LITTLE,
DAIF_FIQ_BIT |
DAIF_IRQ_BIT |
DAIF_ABT_BIT);
(void)memset(&ep_info->args, 0, sizeof(ep_info->args));
plat_trusty_set_boot_args(&ep_info->args);
/* register init handler */
bl31_register_bl32_init(trusty_init);
/* register power management hooks */
psci_register_spd_pm_hook(&trusty_pm);
/* register interrupt handler */
flags = 0;
set_interrupt_rm_flag(flags, NON_SECURE);
ret = register_interrupt_type_handler(INTR_TYPE_S_EL1,
trusty_fiq_handler,
flags);
if (ret != 0) {
VERBOSE("trusty: failed to register fiq handler, ret = %d\n", ret);
}
if (aarch32) {
entry_point_info_t *ns_ep_info;
uint32_t spsr;
ns_ep_info = bl31_plat_get_next_image_ep_info(NON_SECURE);
if (ns_ep_info == NULL) {
NOTICE("Trusty: non-secure image missing.\n");
return -1;
}
spsr = ns_ep_info->spsr;
if (GET_RW(spsr) == MODE_RW_64 && GET_EL(spsr) == MODE_EL2) {
spsr &= ~(MODE_EL_MASK << MODE_EL_SHIFT);
spsr |= MODE_EL1 << MODE_EL_SHIFT;
}
if (GET_RW(spsr) == MODE_RW_32 && GET_M32(spsr) == MODE32_hyp) {
spsr &= ~(MODE32_MASK << MODE32_SHIFT);
spsr |= MODE32_svc << MODE32_SHIFT;
}
if (spsr != ns_ep_info->spsr) {
NOTICE("Trusty: Switch bl33 from EL2 to EL1 (spsr 0x%x -> 0x%x)\n",
ns_ep_info->spsr, spsr);
ns_ep_info->spsr = spsr;
}
}
return 0;
}
/* Define a SPD runtime service descriptor for fast SMC calls */
DECLARE_RT_SVC(
trusty_fast,
OEN_TOS_START,
OEN_TOS_END,
SMC_TYPE_FAST,
trusty_setup,
trusty_smc_handler
);
/* Define a SPD runtime service descriptor for yielding SMC calls */
DECLARE_RT_SVC(
trusty_std,
OEN_TAP_START,
SMC_ENTITY_SECURE_MONITOR,
SMC_TYPE_YIELD,
NULL,
trusty_smc_handler
);