Fooocus/fooocus_extras/preprocessors.py
2023-10-08 17:42:42 -07:00

57 lines
1.5 KiB
Python

import cv2
import numpy as np
def canny_k(x, k=0.5):
import cv2
H, W, C = x.shape
Hs, Ws = int(H * k), int(W * k)
small = cv2.resize(x, (Ws, Hs), interpolation=cv2.INTER_AREA)
return cv2.Canny(small, 100, 200).astype(np.float32) / 255.0
def canny_pyramid(x):
# For some reasons, SAI's Control-lora Canny seems to be trained on canny maps with non-standard resolutions.
# Then we use pyramid to use all resolutions to avoid missing any structure in specific resolutions.
ks = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
cs = [canny_k(x, k) for k in ks]
cur = None
for c in cs:
if cur is None:
cur = c
else:
H, W = c.shape
cur = cv2.resize(cur, (W, H), interpolation=cv2.INTER_LINEAR)
cur = cur * 0.75 + c * 0.25
cur *= 400.0
return cur.clip(0, 255).astype(np.uint8)
def cpds(x):
import cv2
# cv2.decolor is not "decolor", it is Cewu Lu's method
# See http://www.cse.cuhk.edu.hk/leojia/projects/color2gray/index.html
# See https://docs.opencv.org/3.0-beta/modules/photo/doc/decolor.html
raw = cv2.GaussianBlur(x, (0, 0), 1.0)
density, boost = cv2.decolor(raw)
raw = raw.astype(np.float32)
density = density.astype(np.float32)
boost = boost.astype(np.float32)
offset = np.sum((raw - boost) ** 2.0, axis=2) ** 0.5
result = density + offset
result -= np.min(result)
result /= np.max(result)
result *= 255.0
return result.clip(0, 255).astype(np.uint8)