57 lines
1.5 KiB
Python
57 lines
1.5 KiB
Python
import cv2
|
|
import numpy as np
|
|
|
|
|
|
def canny_k(x, k=0.5):
|
|
import cv2
|
|
H, W, C = x.shape
|
|
Hs, Ws = int(H * k), int(W * k)
|
|
small = cv2.resize(x, (Ws, Hs), interpolation=cv2.INTER_AREA)
|
|
return cv2.Canny(small, 100, 200).astype(np.float32) / 255.0
|
|
|
|
|
|
def canny_pyramid(x):
|
|
# For some reasons, SAI's Control-lora Canny seems to be trained on canny maps with non-standard resolutions.
|
|
# Then we use pyramid to use all resolutions to avoid missing any structure in specific resolutions.
|
|
|
|
ks = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
|
|
cs = [canny_k(x, k) for k in ks]
|
|
cur = None
|
|
|
|
for c in cs:
|
|
if cur is None:
|
|
cur = c
|
|
else:
|
|
H, W = c.shape
|
|
cur = cv2.resize(cur, (W, H), interpolation=cv2.INTER_LINEAR)
|
|
cur = cur * 0.75 + c * 0.25
|
|
|
|
cur *= 400.0
|
|
|
|
return cur.clip(0, 255).astype(np.uint8)
|
|
|
|
|
|
def cpds(x):
|
|
import cv2
|
|
# cv2.decolor is not "decolor", it is Cewu Lu's method
|
|
# See http://www.cse.cuhk.edu.hk/leojia/projects/color2gray/index.html
|
|
# See https://docs.opencv.org/3.0-beta/modules/photo/doc/decolor.html
|
|
|
|
raw = cv2.GaussianBlur(x, (0, 0), 1.0)
|
|
density, boost = cv2.decolor(raw)
|
|
|
|
raw = raw.astype(np.float32)
|
|
density = density.astype(np.float32)
|
|
boost = boost.astype(np.float32)
|
|
|
|
offset = np.sum((raw - boost) ** 2.0, axis=2) ** 0.5
|
|
|
|
result = density + offset
|
|
|
|
result -= np.min(result)
|
|
result /= np.max(result)
|
|
|
|
result *= 255.0
|
|
|
|
return result.clip(0, 255).astype(np.uint8)
|