Fooocus/modules/async_worker.py
2023-10-17 07:54:04 +02:00

590 lines
26 KiB
Python

import threading
buffer = []
outputs = []
def worker():
global buffer, outputs
import traceback
import numpy as np
import torch
import time
import shared
import random
import copy
import modules.default_pipeline as pipeline
import modules.core as core
import modules.flags as flags
import modules.path
import modules.patch
import fcbh.model_management
import fooocus_extras.preprocessors as preprocessors
import modules.inpaint_worker as inpaint_worker
import modules.advanced_parameters as advanced_parameters
import fooocus_extras.ip_adapter as ip_adapter
from modules.sdxl_styles import apply_style, apply_wildcards, aspect_ratios, fooocus_expansion
from modules.private_logger import log
from modules.expansion import safe_str
from modules.util import join_prompts, remove_empty_str, HWC3, resize_image, image_is_generated_in_current_ui, make_sure_that_image_is_not_too_large
from modules.upscaler import perform_upscale
try:
async_gradio_app = shared.gradio_root
flag = f'''App started successful. Use the app with {str(async_gradio_app.local_url)} or {str(async_gradio_app.server_name)}:{str(async_gradio_app.server_port)}'''
if async_gradio_app.share:
flag += f''' or {async_gradio_app.share_url}'''
print(flag)
except Exception as e:
print(e)
def progressbar(number, text):
print(f'[Fooocus] {text}')
outputs.append(['preview', (number, text, None)])
@torch.no_grad()
@torch.inference_mode()
def handler(args):
execution_start_time = time.perf_counter()
args.reverse()
prompt = args.pop()
negative_prompt = args.pop()
style_selections = args.pop()
performance_selection = args.pop()
aspect_ratios_selection = args.pop()
image_number = args.pop()
image_seed = args.pop()
sharpness = args.pop()
guidance_scale = args.pop()
base_model_name = args.pop()
refiner_model_name = args.pop()
loras = [(args.pop(), args.pop()) for _ in range(5)]
input_image_checkbox = args.pop()
current_tab = args.pop()
uov_method = args.pop()
uov_input_image = args.pop()
outpaint_selections = args.pop()
inpaint_input_image = args.pop()
cn_tasks = {flags.cn_ip: [], flags.cn_canny: [], flags.cn_cpds: []}
for _ in range(4):
cn_img = args.pop()
cn_stop = args.pop()
cn_weight = args.pop()
cn_type = args.pop()
if cn_img is not None:
cn_tasks[cn_type].append([cn_img, cn_stop, cn_weight])
outpaint_selections = [o.lower() for o in outpaint_selections]
loras_raw = copy.deepcopy(loras)
raw_style_selections = copy.deepcopy(style_selections)
uov_method = uov_method.lower()
if fooocus_expansion in style_selections:
use_expansion = True
style_selections.remove(fooocus_expansion)
else:
use_expansion = False
use_style = len(style_selections) > 0
modules.patch.adaptive_cfg = advanced_parameters.adaptive_cfg
print(f'[Parameters] Adaptive CFG = {modules.patch.adaptive_cfg}')
modules.patch.sharpness = sharpness
print(f'[Parameters] Sharpness = {modules.patch.sharpness}')
modules.patch.positive_adm_scale = advanced_parameters.adm_scaler_positive
modules.patch.negative_adm_scale = advanced_parameters.adm_scaler_negative
modules.patch.adm_scaler_end = advanced_parameters.adm_scaler_end
print(f'[Parameters] ADM Scale = {modules.patch.positive_adm_scale} : {modules.patch.negative_adm_scale} : {modules.patch.adm_scaler_end}')
cfg_scale = float(guidance_scale)
print(f'[Parameters] CFG = {cfg_scale}')
initial_latent = None
denoising_strength = 1.0
tiled = False
inpaint_worker.current_task = None
width, height = aspect_ratios[aspect_ratios_selection]
skip_prompt_processing = False
refiner_swap_method = advanced_parameters.refiner_swap_method
raw_prompt = prompt
raw_negative_prompt = negative_prompt
inpaint_image = None
inpaint_mask = None
inpaint_head_model_path = None
controlnet_canny_path = None
controlnet_cpds_path = None
clip_vision_path, ip_negative_path, ip_adapter_path = None, None, None
seed = image_seed
max_seed = int(1024 * 1024 * 1024)
if not isinstance(seed, int):
seed = random.randint(1, max_seed)
if seed < 0:
seed = - seed
seed = seed % max_seed
if performance_selection == 'Speed':
steps = 30
switch = 20
else:
steps = 60
switch = 40
sampler_name = advanced_parameters.sampler_name
scheduler_name = advanced_parameters.scheduler_name
goals = []
tasks = []
if input_image_checkbox:
if (current_tab == 'uov' or (current_tab == 'ip' and advanced_parameters.mixing_image_prompt_and_vary_upscale)) \
and uov_method != flags.disabled and uov_input_image is not None:
uov_input_image = HWC3(uov_input_image)
if 'vary' in uov_method:
goals.append('vary')
elif 'upscale' in uov_method:
goals.append('upscale')
if 'fast' in uov_method:
skip_prompt_processing = True
else:
if performance_selection == 'Speed':
steps = 18
switch = 12
else:
steps = 36
switch = 24
progressbar(1, 'Downloading upscale models ...')
modules.path.downloading_upscale_model()
if (current_tab == 'inpaint' or (current_tab == 'ip' and advanced_parameters.mixing_image_prompt_and_inpaint))\
and isinstance(inpaint_input_image, dict):
inpaint_image = inpaint_input_image['image']
inpaint_mask = inpaint_input_image['mask'][:, :, 0]
inpaint_image = HWC3(inpaint_image)
if isinstance(inpaint_image, np.ndarray) and isinstance(inpaint_mask, np.ndarray) \
and (np.any(inpaint_mask > 127) or len(outpaint_selections) > 0):
progressbar(1, 'Downloading inpainter ...')
inpaint_head_model_path, inpaint_patch_model_path = modules.path.downloading_inpaint_models(advanced_parameters.inpaint_engine)
loras += [(inpaint_patch_model_path, 1.0)]
print(f'[Inpaint] Current inpaint model is {inpaint_patch_model_path}')
goals.append('inpaint')
sampler_name = 'dpmpp_2m_sde_gpu' # only support the patched dpmpp_2m_sde_gpu
if current_tab == 'ip' or \
advanced_parameters.mixing_image_prompt_and_inpaint or \
advanced_parameters.mixing_image_prompt_and_vary_upscale:
goals.append('cn')
progressbar(1, 'Downloading control models ...')
if len(cn_tasks[flags.cn_canny]) > 0:
controlnet_canny_path = modules.path.downloading_controlnet_canny()
if len(cn_tasks[flags.cn_cpds]) > 0:
controlnet_cpds_path = modules.path.downloading_controlnet_cpds()
if len(cn_tasks[flags.cn_ip]) > 0:
clip_vision_path, ip_negative_path, ip_adapter_path = modules.path.downloading_ip_adapters()
progressbar(1, 'Loading control models ...')
# Load or unload CNs
pipeline.refresh_controlnets([controlnet_canny_path, controlnet_cpds_path])
ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_path)
if advanced_parameters.overwrite_step > 0:
steps = advanced_parameters.overwrite_step
if advanced_parameters.overwrite_switch > 0:
switch = advanced_parameters.overwrite_switch
if advanced_parameters.overwrite_width > 0:
width = advanced_parameters.overwrite_width
if advanced_parameters.overwrite_height > 0:
height = advanced_parameters.overwrite_height
print(f'[Parameters] Sampler = {sampler_name} - {scheduler_name}')
print(f'[Parameters] Steps = {steps} - {switch}')
progressbar(1, 'Initializing ...')
if not skip_prompt_processing:
prompts = remove_empty_str([safe_str(p) for p in prompt.split('\n')], default='')
negative_prompts = remove_empty_str([safe_str(p) for p in negative_prompt.split('\n')], default='')
prompt = prompts[0]
negative_prompt = negative_prompts[0]
extra_positive_prompts = prompts[1:] if len(prompts) > 1 else []
extra_negative_prompts = negative_prompts[1:] if len(negative_prompts) > 1 else []
progressbar(3, 'Loading models ...')
pipeline.refresh_everything(refiner_model_name=refiner_model_name, base_model_name=base_model_name, loras=loras)
progressbar(3, 'Processing prompts ...')
tasks = []
for i in range(image_number):
task_seed = seed + i
task_prompt = apply_wildcards(prompt, task_seed)
positive_basic_workloads = []
negative_basic_workloads = []
if use_style:
for s in style_selections:
p, n = apply_style(s, positive=task_prompt)
positive_basic_workloads.append(p)
negative_basic_workloads.append(n)
else:
positive_basic_workloads.append(task_prompt)
negative_basic_workloads.append(negative_prompt) # Always use independent workload for negative.
positive_basic_workloads = positive_basic_workloads + extra_positive_prompts
negative_basic_workloads = negative_basic_workloads + extra_negative_prompts
positive_basic_workloads = remove_empty_str(positive_basic_workloads, default=task_prompt)
negative_basic_workloads = remove_empty_str(negative_basic_workloads, default=negative_prompt)
positive_top_k = len(positive_basic_workloads)
negative_top_k = len(negative_basic_workloads)
tasks.append(dict(
task_seed=task_seed,
task_prompt=task_prompt,
positive=positive_basic_workloads,
negative=negative_basic_workloads,
expansion='',
c=None,
uc=None
))
if use_expansion:
for i, t in enumerate(tasks):
progressbar(5, f'Preparing Fooocus text #{i + 1} ...')
expansion = pipeline.final_expansion(t['task_prompt'], t['task_seed'])
print(f'[Prompt Expansion] New suffix: {expansion}')
t['expansion'] = expansion
t['positive'] = copy.deepcopy(t['positive']) + [join_prompts(t['task_prompt'], expansion)] # Deep copy.
for i, t in enumerate(tasks):
progressbar(7, f'Encoding positive #{i + 1} ...')
t['c'] = pipeline.clip_encode(texts=t['positive'], pool_top_k=positive_top_k)
for i, t in enumerate(tasks):
progressbar(10, f'Encoding negative #{i + 1} ...')
t['uc'] = pipeline.clip_encode(texts=t['negative'], pool_top_k=negative_top_k)
if len(goals) > 0:
progressbar(13, 'Image processing ...')
if 'vary' in goals:
if not image_is_generated_in_current_ui(uov_input_image, ui_width=width, ui_height=height):
uov_input_image = resize_image(uov_input_image, width=width, height=height)
print(f'Resolution corrected - users are uploading their own images.')
else:
print(f'Processing images generated by Fooocus.')
if 'subtle' in uov_method:
denoising_strength = 0.5
if 'strong' in uov_method:
denoising_strength = 0.85
if advanced_parameters.overwrite_vary_strength > 0:
denoising_strength = advanced_parameters.overwrite_vary_strength
uov_input_image = make_sure_that_image_is_not_too_large(uov_input_image)
initial_pixels = core.numpy_to_pytorch(uov_input_image)
progressbar(13, 'VAE encoding ...')
initial_latent = core.encode_vae(vae=pipeline.final_vae, pixels=initial_pixels)
B, C, H, W = initial_latent['samples'].shape
width = W * 8
height = H * 8
print(f'Final resolution is {str((height, width))}.')
if 'upscale' in goals:
H, W, C = uov_input_image.shape
progressbar(13, f'Upscaling image from {str((H, W))} ...')
uov_input_image = core.numpy_to_pytorch(uov_input_image)
uov_input_image = perform_upscale(uov_input_image)
uov_input_image = core.pytorch_to_numpy(uov_input_image)[0]
print(f'Image upscaled.')
if '1.5x' in uov_method:
f = 1.5
elif '2x' in uov_method:
f = 2.0
else:
f = 1.0
width_f = int(width * f)
height_f = int(height * f)
if image_is_generated_in_current_ui(uov_input_image, ui_width=width_f, ui_height=height_f):
uov_input_image = resize_image(uov_input_image, width=int(W * f), height=int(H * f))
print(f'Processing images generated by Fooocus.')
else:
uov_input_image = resize_image(uov_input_image, width=width_f, height=height_f)
print(f'Resolution corrected - users are uploading their own images.')
H, W, C = uov_input_image.shape
image_is_super_large = H * W > 2800 * 2800
if 'fast' in uov_method:
direct_return = True
elif image_is_super_large:
print('Image is too large. Directly returned the SR image. '
'Usually directly return SR image at 4K resolution '
'yields better results than SDXL diffusion.')
direct_return = True
else:
direct_return = False
if direct_return:
d = [('Upscale (Fast)', '2x')]
log(uov_input_image, d, single_line_number=1)
outputs.append(['results', [uov_input_image]])
return
tiled = True
denoising_strength = 0.382
if advanced_parameters.overwrite_upscale_strength > 0:
denoising_strength = advanced_parameters.overwrite_upscale_strength
initial_pixels = core.numpy_to_pytorch(uov_input_image)
progressbar(13, 'VAE encoding ...')
initial_latent = core.encode_vae(
vae=pipeline.final_vae if pipeline.final_refiner_vae is None else pipeline.final_refiner_vae,
pixels=initial_pixels, tiled=True)
B, C, H, W = initial_latent['samples'].shape
width = W * 8
height = H * 8
print(f'Final resolution is {str((height, width))}.')
refiner_swap_method = 'upscale'
if 'inpaint' in goals:
if len(outpaint_selections) > 0:
H, W, C = inpaint_image.shape
if 'top' in outpaint_selections:
inpaint_image = np.pad(inpaint_image, [[int(H * 0.3), 0], [0, 0], [0, 0]], mode='edge')
inpaint_mask = np.pad(inpaint_mask, [[int(H * 0.3), 0], [0, 0]], mode='constant',
constant_values=255)
if 'bottom' in outpaint_selections:
inpaint_image = np.pad(inpaint_image, [[0, int(H * 0.3)], [0, 0], [0, 0]], mode='edge')
inpaint_mask = np.pad(inpaint_mask, [[0, int(H * 0.3)], [0, 0]], mode='constant',
constant_values=255)
H, W, C = inpaint_image.shape
if 'left' in outpaint_selections:
inpaint_image = np.pad(inpaint_image, [[0, 0], [int(H * 0.3), 0], [0, 0]], mode='edge')
inpaint_mask = np.pad(inpaint_mask, [[0, 0], [int(H * 0.3), 0]], mode='constant',
constant_values=255)
if 'right' in outpaint_selections:
inpaint_image = np.pad(inpaint_image, [[0, 0], [0, int(H * 0.3)], [0, 0]], mode='edge')
inpaint_mask = np.pad(inpaint_mask, [[0, 0], [0, int(H * 0.3)]], mode='constant',
constant_values=255)
inpaint_image = np.ascontiguousarray(inpaint_image.copy())
inpaint_mask = np.ascontiguousarray(inpaint_mask.copy())
inpaint_worker.current_task = inpaint_worker.InpaintWorker(image=inpaint_image, mask=inpaint_mask,
is_outpaint=len(outpaint_selections) > 0)
pipeline.final_unet.model.diffusion_model.in_inpaint = True
# print(f'Inpaint task: {str((height, width))}')
# outputs.append(['results', inpaint_worker.current_task.visualize_mask_processing()])
# return
progressbar(13, 'VAE encoding ...')
inpaint_pixels = core.numpy_to_pytorch(inpaint_worker.current_task.image_ready)
initial_latent = core.encode_vae(vae=pipeline.final_vae, pixels=inpaint_pixels)
inpaint_latent = initial_latent['samples']
B, C, H, W = inpaint_latent.shape
inpaint_mask = core.numpy_to_pytorch(inpaint_worker.current_task.mask_ready[None])
inpaint_mask = torch.nn.functional.avg_pool2d(inpaint_mask, (8, 8))
inpaint_mask = torch.nn.functional.interpolate(inpaint_mask, (H, W), mode='bilinear')
latent_after_swap = None
if pipeline.final_refiner_vae is not None:
progressbar(13, 'VAE SD15 encoding ...')
latent_after_swap = core.encode_vae(vae=pipeline.final_refiner_vae, pixels=inpaint_pixels)['samples']
inpaint_worker.current_task.load_latent(latent=inpaint_latent, mask=inpaint_mask,
latent_after_swap=latent_after_swap)
progressbar(13, 'VAE inpaint encoding ...')
inpaint_mask = (inpaint_worker.current_task.mask_ready > 0).astype(np.float32)
inpaint_mask = torch.tensor(inpaint_mask).float()
vae_dict = core.encode_vae_inpaint(
mask=inpaint_mask, vae=pipeline.final_vae, pixels=inpaint_pixels)
inpaint_latent = vae_dict['samples']
inpaint_mask = vae_dict['noise_mask']
inpaint_worker.current_task.load_inpaint_guidance(latent=inpaint_latent, mask=inpaint_mask,
model_path=inpaint_head_model_path)
B, C, H, W = inpaint_latent.shape
final_height, final_width = inpaint_worker.current_task.image_raw.shape[:2]
height, width = H * 8, W * 8
print(f'Final resolution is {str((final_height, final_width))}, latent is {str((height, width))}.')
if 'cn' in goals:
for task in cn_tasks[flags.cn_canny]:
cn_img, cn_stop, cn_weight = task
cn_img = resize_image(HWC3(cn_img), width=width, height=height)
cn_img = preprocessors.canny_pyramid(cn_img)
cn_img = HWC3(cn_img)
task[0] = core.numpy_to_pytorch(cn_img)
if advanced_parameters.debugging_cn_preprocessor:
outputs.append(['results', [cn_img]])
return
for task in cn_tasks[flags.cn_cpds]:
cn_img, cn_stop, cn_weight = task
cn_img = resize_image(HWC3(cn_img), width=width, height=height)
cn_img = preprocessors.cpds(cn_img)
cn_img = HWC3(cn_img)
task[0] = core.numpy_to_pytorch(cn_img)
if advanced_parameters.debugging_cn_preprocessor:
outputs.append(['results', [cn_img]])
return
for task in cn_tasks[flags.cn_ip]:
cn_img, cn_stop, cn_weight = task
cn_img = HWC3(cn_img)
# https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75
cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0)
task[0] = ip_adapter.preprocess(cn_img)
if advanced_parameters.debugging_cn_preprocessor:
outputs.append(['results', [cn_img]])
return
if len(cn_tasks[flags.cn_ip]) > 0:
pipeline.final_unet = ip_adapter.patch_model(pipeline.final_unet, cn_tasks[flags.cn_ip])
if advanced_parameters.freeu_enabled:
print(f'FreeU is enabled!')
pipeline.final_unet = core.apply_freeu(
pipeline.final_unet,
advanced_parameters.freeu_b1,
advanced_parameters.freeu_b2,
advanced_parameters.freeu_s1,
advanced_parameters.freeu_s2
)
results = []
all_steps = steps * image_number
preparation_time = time.perf_counter() - execution_start_time
print(f'Preparation time: {preparation_time:.2f} seconds')
outputs.append(['preview', (13, 'Moving model to GPU ...', None)])
def callback(step, x0, x, total_steps, y):
done_steps = current_task_id * steps + step
outputs.append(['preview', (
int(15.0 + 85.0 * float(done_steps) / float(all_steps)),
f'Step {step}/{total_steps} in the {current_task_id + 1}-th Sampling',
y)])
for current_task_id, task in enumerate(tasks):
execution_start_time = time.perf_counter()
try:
positive_cond, negative_cond = task['c'], task['uc']
if 'cn' in goals:
for cn_flag, cn_path in [
(flags.cn_canny, controlnet_canny_path),
(flags.cn_cpds, controlnet_cpds_path)
]:
for cn_img, cn_stop, cn_weight in cn_tasks[cn_flag]:
positive_cond, negative_cond = core.apply_controlnet(
positive_cond, negative_cond,
pipeline.loaded_ControlNets[cn_path], cn_img, cn_weight, 0, cn_stop)
imgs = pipeline.process_diffusion(
positive_cond=positive_cond,
negative_cond=negative_cond,
steps=steps,
switch=switch,
width=width,
height=height,
image_seed=task['task_seed'],
callback=callback,
sampler_name=sampler_name,
scheduler_name=scheduler_name,
latent=initial_latent,
denoise=denoising_strength,
tiled=tiled,
cfg_scale=cfg_scale,
refiner_swap_method=refiner_swap_method
)
del task['c'], task['uc'], positive_cond, negative_cond # Save memory
if inpaint_worker.current_task is not None:
imgs = [inpaint_worker.current_task.post_process(x) for x in imgs]
for x in imgs:
d = [
('Prompt', raw_prompt),
('Negative Prompt', raw_negative_prompt),
('Fooocus V2 Expansion', task['expansion']),
('Styles', str(raw_style_selections)),
('Performance', performance_selection),
('Resolution', str((width, height))),
('Sharpness', sharpness),
('Guidance Scale', guidance_scale),
('ADM Guidance', str((modules.patch.positive_adm_scale, modules.patch.negative_adm_scale))),
('Base Model', base_model_name),
('Refiner Model', refiner_model_name),
('Sampler', sampler_name),
('Scheduler', scheduler_name),
('Seed', task['task_seed'])
]
for n, w in loras_raw:
if n != 'None':
d.append((f'LoRA [{n}] weight', w))
log(x, d, single_line_number=3)
results += imgs
except fcbh.model_management.InterruptProcessingException as e:
if shared.last_stop == 'skip':
print('User skipped')
continue
else:
print('User stopped')
break
execution_time = time.perf_counter() - execution_start_time
print(f'Generating and saving time: {execution_time:.2f} seconds')
outputs.append(['results', results])
pipeline.prepare_text_encoder(async_call=True)
return
while True:
time.sleep(0.01)
if len(buffer) > 0:
task = buffer.pop(0)
try:
handler(task)
except:
traceback.print_exc()
outputs.append(['results', []])
pass
threading.Thread(target=worker, daemon=True).start()