83 lines
2.4 KiB
Python
83 lines
2.4 KiB
Python
import cv2
|
|
import numpy as np
|
|
import modules.advanced_parameters as advanced_parameters
|
|
|
|
|
|
def centered_canny(x: np.ndarray):
|
|
assert isinstance(x, np.ndarray)
|
|
assert x.ndim == 2 and x.dtype == np.uint8
|
|
|
|
y = cv2.Canny(x, int(advanced_parameters.canny_low_threshold), int(advanced_parameters.canny_high_threshold))
|
|
y = y.astype(np.float32) / 255.0
|
|
return y
|
|
|
|
|
|
def centered_canny_color(x: np.ndarray):
|
|
assert isinstance(x, np.ndarray)
|
|
assert x.ndim == 3 and x.shape[2] == 3
|
|
|
|
result = [centered_canny(x[..., i]) for i in range(3)]
|
|
result = np.stack(result, axis=2)
|
|
return result
|
|
|
|
|
|
def pyramid_canny_color(x: np.ndarray):
|
|
assert isinstance(x, np.ndarray)
|
|
assert x.ndim == 3 and x.shape[2] == 3
|
|
|
|
H, W, C = x.shape
|
|
acc_edge = None
|
|
|
|
for k in [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]:
|
|
Hs, Ws = int(H * k), int(W * k)
|
|
small = cv2.resize(x, (Ws, Hs), interpolation=cv2.INTER_AREA)
|
|
edge = centered_canny_color(small)
|
|
if acc_edge is None:
|
|
acc_edge = edge
|
|
else:
|
|
acc_edge = cv2.resize(acc_edge, (edge.shape[1], edge.shape[0]), interpolation=cv2.INTER_LINEAR)
|
|
acc_edge = acc_edge * 0.75 + edge * 0.25
|
|
|
|
return acc_edge
|
|
|
|
|
|
def norm255(x, low=4, high=96):
|
|
assert isinstance(x, np.ndarray)
|
|
assert x.ndim == 2 and x.dtype == np.float32
|
|
|
|
v_min = np.percentile(x, low)
|
|
v_max = np.percentile(x, high)
|
|
|
|
x -= v_min
|
|
x /= v_max - v_min
|
|
|
|
return x * 255.0
|
|
|
|
|
|
def canny_pyramid(x):
|
|
# For some reasons, SAI's Control-lora Canny seems to be trained on canny maps with non-standard resolutions.
|
|
# Then we use pyramid to use all resolutions to avoid missing any structure in specific resolutions.
|
|
|
|
color_canny = pyramid_canny_color(x)
|
|
result = np.sum(color_canny, axis=2)
|
|
|
|
return norm255(result, low=1, high=99).clip(0, 255).astype(np.uint8)
|
|
|
|
|
|
def cpds(x):
|
|
# cv2.decolor is not "decolor", it is Cewu Lu's method
|
|
# See http://www.cse.cuhk.edu.hk/leojia/projects/color2gray/index.html
|
|
# See https://docs.opencv.org/3.0-beta/modules/photo/doc/decolor.html
|
|
|
|
raw = cv2.GaussianBlur(x, (0, 0), 0.8)
|
|
density, boost = cv2.decolor(raw)
|
|
|
|
raw = raw.astype(np.float32)
|
|
density = density.astype(np.float32)
|
|
boost = boost.astype(np.float32)
|
|
|
|
offset = np.sum((raw - boost) ** 2.0, axis=2) ** 0.5
|
|
result = density + offset
|
|
|
|
return norm255(result, low=4, high=96).clip(0, 255).astype(np.uint8)
|