49 lines
1.4 KiB
Python
49 lines
1.4 KiB
Python
import torch
|
||
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, set_seed
|
||
from modules.path import fooocus_expansion_path
|
||
|
||
|
||
fooocus_magic_split = [
|
||
', extremely',
|
||
', trending',
|
||
', intricate',
|
||
# '. The',
|
||
]
|
||
dangrous_patterns = '[]【】()()|::'
|
||
|
||
|
||
def safe_str(x):
|
||
x = str(x)
|
||
for _ in range(16):
|
||
x = x.replace(' ', ' ')
|
||
return x.rstrip(",. \r\n")
|
||
|
||
|
||
def remove_pattern(x, pattern):
|
||
for p in pattern:
|
||
x = x.replace(p, '')
|
||
return x
|
||
|
||
|
||
class FooocusExpansion:
|
||
def __init__(self):
|
||
self.tokenizer = AutoTokenizer.from_pretrained(fooocus_expansion_path)
|
||
self.model = AutoModelForCausalLM.from_pretrained(fooocus_expansion_path)
|
||
self.pipe = pipeline('text-generation',
|
||
model=self.model,
|
||
tokenizer=self.tokenizer,
|
||
device='cpu',
|
||
torch_dtype=torch.float32)
|
||
print('Fooocus Expansion engine loaded.')
|
||
|
||
def __call__(self, prompt, seed):
|
||
seed = int(seed)
|
||
set_seed(seed)
|
||
origin = safe_str(prompt)
|
||
prompt = origin + fooocus_magic_split[seed % len(fooocus_magic_split)]
|
||
response = self.pipe(prompt, max_length=len(prompt) + 256)
|
||
result = response[0]['generated_text'][len(origin):]
|
||
result = safe_str(result)
|
||
result = remove_pattern(result, dangrous_patterns)
|
||
return result
|