443 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			443 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from comfy.samplers import *
 | |
| 
 | |
| import comfy.model_management
 | |
| import modules.virtual_memory
 | |
| 
 | |
| 
 | |
| class KSamplerBasic:
 | |
|     SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"]
 | |
|     SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
 | |
|                 "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
 | |
|                 "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "ddim", "uni_pc", "uni_pc_bh2", "dpmpp_fooocus_2m_sde_inpaint_seamless"]
 | |
| 
 | |
|     def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
 | |
|         self.model = model
 | |
|         self.model_denoise = CFGNoisePredictor(self.model)
 | |
|         if self.model.model_type == model_base.ModelType.V_PREDICTION:
 | |
|             self.model_wrap = CompVisVDenoiser(self.model_denoise, quantize=True)
 | |
|         else:
 | |
|             self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model_denoise, quantize=True)
 | |
| 
 | |
|         self.model_k = KSamplerX0Inpaint(self.model_wrap)
 | |
|         self.device = device
 | |
|         if scheduler not in self.SCHEDULERS:
 | |
|             scheduler = self.SCHEDULERS[0]
 | |
|         if sampler not in self.SAMPLERS:
 | |
|             sampler = self.SAMPLERS[0]
 | |
|         self.scheduler = scheduler
 | |
|         self.sampler = sampler
 | |
|         self.sigma_min=float(self.model_wrap.sigma_min)
 | |
|         self.sigma_max=float(self.model_wrap.sigma_max)
 | |
|         self.set_steps(steps, denoise)
 | |
|         self.denoise = denoise
 | |
|         self.model_options = model_options
 | |
| 
 | |
|     def calculate_sigmas(self, steps):
 | |
|         sigmas = None
 | |
| 
 | |
|         discard_penultimate_sigma = False
 | |
|         if self.sampler in ['dpm_2', 'dpm_2_ancestral']:
 | |
|             steps += 1
 | |
|             discard_penultimate_sigma = True
 | |
| 
 | |
|         if self.scheduler == "karras":
 | |
|             sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
 | |
|         elif self.scheduler == "exponential":
 | |
|             sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
 | |
|         elif self.scheduler == "normal":
 | |
|             sigmas = self.model_wrap.get_sigmas(steps)
 | |
|         elif self.scheduler == "simple":
 | |
|             sigmas = simple_scheduler(self.model_wrap, steps)
 | |
|         elif self.scheduler == "ddim_uniform":
 | |
|             sigmas = ddim_scheduler(self.model_wrap, steps)
 | |
|         else:
 | |
|             print("error invalid scheduler", self.scheduler)
 | |
| 
 | |
|         if discard_penultimate_sigma:
 | |
|             sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
 | |
|         return sigmas
 | |
| 
 | |
|     def set_steps(self, steps, denoise=None):
 | |
|         self.steps = steps
 | |
|         if denoise is None or denoise > 0.9999:
 | |
|             self.sigmas = self.calculate_sigmas(steps).to(self.device)
 | |
|         else:
 | |
|             new_steps = int(steps/denoise)
 | |
|             sigmas = self.calculate_sigmas(new_steps).to(self.device)
 | |
|             self.sigmas = sigmas[-(steps + 1):]
 | |
| 
 | |
|     def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
 | |
|         if sigmas is None:
 | |
|             sigmas = self.sigmas
 | |
|         sigma_min = self.sigma_min
 | |
| 
 | |
|         if last_step is not None and last_step < (len(sigmas) - 1):
 | |
|             sigma_min = sigmas[last_step]
 | |
|             sigmas = sigmas[:last_step + 1]
 | |
|             if force_full_denoise:
 | |
|                 sigmas[-1] = 0
 | |
| 
 | |
|         if start_step is not None:
 | |
|             if start_step < (len(sigmas) - 1):
 | |
|                 sigmas = sigmas[start_step:]
 | |
|             else:
 | |
|                 if latent_image is not None:
 | |
|                     return latent_image
 | |
|                 else:
 | |
|                     return torch.zeros_like(noise)
 | |
| 
 | |
|         positive = positive[:]
 | |
|         negative = negative[:]
 | |
| 
 | |
|         resolve_cond_masks(positive, noise.shape[2], noise.shape[3], self.device)
 | |
|         resolve_cond_masks(negative, noise.shape[2], noise.shape[3], self.device)
 | |
| 
 | |
|         calculate_start_end_timesteps(self.model_wrap, negative)
 | |
|         calculate_start_end_timesteps(self.model_wrap, positive)
 | |
| 
 | |
|         #make sure each cond area has an opposite one with the same area
 | |
|         for c in positive:
 | |
|             create_cond_with_same_area_if_none(negative, c)
 | |
|         for c in negative:
 | |
|             create_cond_with_same_area_if_none(positive, c)
 | |
| 
 | |
|         pre_run_control(self.model_wrap, negative + positive)
 | |
| 
 | |
|         apply_empty_x_to_equal_area(list(filter(lambda c: c[1].get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
 | |
|         apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])
 | |
| 
 | |
|         if self.model.is_adm():
 | |
|             positive = encode_adm(self.model, positive, noise.shape[0], noise.shape[3], noise.shape[2], self.device, "positive")
 | |
|             negative = encode_adm(self.model, negative, noise.shape[0], noise.shape[3], noise.shape[2], self.device, "negative")
 | |
| 
 | |
|         if latent_image is not None:
 | |
|             latent_image = self.model.process_latent_in(latent_image)
 | |
| 
 | |
|         extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": self.model_options, "seed":seed}
 | |
| 
 | |
|         cond_concat = None
 | |
|         if hasattr(self.model, 'concat_keys'): #inpaint
 | |
|             cond_concat = []
 | |
|             for ck in self.model.concat_keys:
 | |
|                 if denoise_mask is not None:
 | |
|                     if ck == "mask":
 | |
|                         cond_concat.append(denoise_mask[:,:1])
 | |
|                     elif ck == "masked_image":
 | |
|                         cond_concat.append(latent_image) #NOTE: the latent_image should be masked by the mask in pixel space
 | |
|                 else:
 | |
|                     if ck == "mask":
 | |
|                         cond_concat.append(torch.ones_like(noise)[:,:1])
 | |
|                     elif ck == "masked_image":
 | |
|                         cond_concat.append(blank_inpaint_image_like(noise))
 | |
|             extra_args["cond_concat"] = cond_concat
 | |
| 
 | |
|         if sigmas[0] != self.sigmas[0] or (self.denoise is not None and self.denoise < 1.0):
 | |
|             max_denoise = False
 | |
|         else:
 | |
|             max_denoise = True
 | |
| 
 | |
| 
 | |
|         if self.sampler == "uni_pc":
 | |
|             samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)
 | |
|         elif self.sampler == "uni_pc_bh2":
 | |
|             samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)
 | |
|         elif self.sampler == "ddim":
 | |
|             timesteps = []
 | |
|             for s in range(sigmas.shape[0]):
 | |
|                 timesteps.insert(0, self.model_wrap.sigma_to_discrete_timestep(sigmas[s]))
 | |
|             noise_mask = None
 | |
|             if denoise_mask is not None:
 | |
|                 noise_mask = 1.0 - denoise_mask
 | |
| 
 | |
|             ddim_callback = None
 | |
|             if callback is not None:
 | |
|                 total_steps = len(timesteps) - 1
 | |
|                 ddim_callback = lambda pred_x0, i: callback(i, pred_x0, None, total_steps)
 | |
| 
 | |
|             sampler = DDIMSampler(self.model, device=self.device)
 | |
|             sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False)
 | |
|             z_enc = sampler.stochastic_encode(latent_image, torch.tensor([len(timesteps) - 1] * noise.shape[0]).to(self.device), noise=noise, max_denoise=max_denoise)
 | |
|             samples, _ = sampler.sample_custom(ddim_timesteps=timesteps,
 | |
|                                                     conditioning=positive,
 | |
|                                                     batch_size=noise.shape[0],
 | |
|                                                     shape=noise.shape[1:],
 | |
|                                                     verbose=False,
 | |
|                                                     unconditional_guidance_scale=cfg,
 | |
|                                                     unconditional_conditioning=negative,
 | |
|                                                     eta=0.0,
 | |
|                                                     x_T=z_enc,
 | |
|                                                     x0=latent_image,
 | |
|                                                     img_callback=ddim_callback,
 | |
|                                                     denoise_function=self.model_wrap.predict_eps_discrete_timestep,
 | |
|                                                     extra_args=extra_args,
 | |
|                                                     mask=noise_mask,
 | |
|                                                     to_zero=sigmas[-1]==0,
 | |
|                                                     end_step=sigmas.shape[0] - 1,
 | |
|                                                     disable_pbar=disable_pbar)
 | |
| 
 | |
|         else:
 | |
|             extra_args["denoise_mask"] = denoise_mask
 | |
|             self.model_k.latent_image = latent_image
 | |
|             self.model_k.noise = noise
 | |
| 
 | |
|             if max_denoise:
 | |
|                 noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0)
 | |
|             else:
 | |
|                 noise = noise * sigmas[0]
 | |
| 
 | |
|             k_callback = None
 | |
|             total_steps = len(sigmas) - 1
 | |
|             if callback is not None:
 | |
|                 k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)
 | |
| 
 | |
|             if latent_image is not None:
 | |
|                 noise += latent_image
 | |
|             if self.sampler == "dpm_fast":
 | |
|                 samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
 | |
|             elif self.sampler == "dpm_adaptive":
 | |
|                 samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback, disable=disable_pbar)
 | |
|             else:
 | |
|                 samples = getattr(k_diffusion_sampling, "sample_{}".format(self.sampler))(self.model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
 | |
| 
 | |
|         return self.model.process_latent_out(samples.to(torch.float32))
 | |
| 
 | |
| 
 | |
| class KSamplerWithRefiner:
 | |
|     SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"]
 | |
|     SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
 | |
|                 "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
 | |
|                 "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "ddim", "uni_pc", "uni_pc_bh2", "dpmpp_fooocus_2m_sde_inpaint_seamless"]
 | |
| 
 | |
|     def __init__(self, model, refiner_model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
 | |
|         self.model_patcher = model
 | |
|         self.refiner_model_patcher = refiner_model
 | |
| 
 | |
|         self.model = model.model
 | |
|         self.refiner_model = refiner_model.model
 | |
| 
 | |
|         self.model_denoise = CFGNoisePredictor(self.model)
 | |
|         self.refiner_model_denoise = CFGNoisePredictor(self.refiner_model)
 | |
| 
 | |
|         if self.model.model_type == model_base.ModelType.V_PREDICTION:
 | |
|             self.model_wrap = CompVisVDenoiser(self.model_denoise, quantize=True)
 | |
|         else:
 | |
|             self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model_denoise, quantize=True)
 | |
| 
 | |
|         if self.refiner_model.model_type == model_base.ModelType.V_PREDICTION:
 | |
|             self.refiner_model_wrap = CompVisVDenoiser(self.refiner_model_denoise, quantize=True)
 | |
|         else:
 | |
|             self.refiner_model_wrap = k_diffusion_external.CompVisDenoiser(self.refiner_model_denoise, quantize=True)
 | |
| 
 | |
|         self.model_k = KSamplerX0Inpaint(self.model_wrap)
 | |
|         self.refiner_model_k = KSamplerX0Inpaint(self.refiner_model_wrap)
 | |
| 
 | |
|         self.device = device
 | |
|         if scheduler not in self.SCHEDULERS:
 | |
|             scheduler = self.SCHEDULERS[0]
 | |
|         if sampler not in self.SAMPLERS:
 | |
|             sampler = self.SAMPLERS[0]
 | |
|         self.scheduler = scheduler
 | |
|         self.sampler = sampler
 | |
|         self.sigma_min = float(self.model_wrap.sigma_min)
 | |
|         self.sigma_max = float(self.model_wrap.sigma_max)
 | |
|         self.set_steps(steps, denoise)
 | |
|         self.denoise = denoise
 | |
|         self.model_options = model_options
 | |
| 
 | |
|     def calculate_sigmas(self, steps):
 | |
|         sigmas = None
 | |
| 
 | |
|         discard_penultimate_sigma = False
 | |
|         if self.sampler in ['dpm_2', 'dpm_2_ancestral']:
 | |
|             steps += 1
 | |
|             discard_penultimate_sigma = True
 | |
| 
 | |
|         if self.scheduler == "karras":
 | |
|             sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
 | |
|         elif self.scheduler == "exponential":
 | |
|             sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=self.sigma_min,
 | |
|                                                                  sigma_max=self.sigma_max)
 | |
|         elif self.scheduler == "normal":
 | |
|             sigmas = self.model_wrap.get_sigmas(steps)
 | |
|         elif self.scheduler == "simple":
 | |
|             sigmas = simple_scheduler(self.model_wrap, steps)
 | |
|         elif self.scheduler == "ddim_uniform":
 | |
|             sigmas = ddim_scheduler(self.model_wrap, steps)
 | |
|         else:
 | |
|             print("error invalid scheduler", self.scheduler)
 | |
| 
 | |
|         if discard_penultimate_sigma:
 | |
|             sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
 | |
|         return sigmas
 | |
| 
 | |
|     def set_steps(self, steps, denoise=None):
 | |
|         self.steps = steps
 | |
|         if denoise is None or denoise > 0.9999:
 | |
|             self.sigmas = self.calculate_sigmas(steps).to(self.device)
 | |
|         else:
 | |
|             new_steps = int(steps / denoise)
 | |
|             sigmas = self.calculate_sigmas(new_steps).to(self.device)
 | |
|             self.sigmas = sigmas[-(steps + 1):]
 | |
| 
 | |
|     def sample(self, noise, positive, negative, refiner_positive, refiner_negative, cfg, latent_image=None,
 | |
|                start_step=None, last_step=None, refiner_switch_step=None,
 | |
|                force_full_denoise=False, denoise_mask=None, sigmas=None, callback_function=None, disable_pbar=False, seed=None):
 | |
|         if sigmas is None:
 | |
|             sigmas = self.sigmas
 | |
|         sigma_min = self.sigma_min
 | |
| 
 | |
|         if last_step is not None and last_step < (len(sigmas) - 1):
 | |
|             sigma_min = sigmas[last_step]
 | |
|             sigmas = sigmas[:last_step + 1]
 | |
|             if force_full_denoise:
 | |
|                 sigmas[-1] = 0
 | |
| 
 | |
|         if start_step is not None:
 | |
|             if start_step < (len(sigmas) - 1):
 | |
|                 sigmas = sigmas[start_step:]
 | |
|             else:
 | |
|                 if latent_image is not None:
 | |
|                     return latent_image
 | |
|                 else:
 | |
|                     return torch.zeros_like(noise)
 | |
| 
 | |
|         positive = positive[:]
 | |
|         negative = negative[:]
 | |
| 
 | |
|         resolve_cond_masks(positive, noise.shape[2], noise.shape[3], self.device)
 | |
|         resolve_cond_masks(negative, noise.shape[2], noise.shape[3], self.device)
 | |
| 
 | |
|         calculate_start_end_timesteps(self.model_wrap, negative)
 | |
|         calculate_start_end_timesteps(self.model_wrap, positive)
 | |
| 
 | |
|         # make sure each cond area has an opposite one with the same area
 | |
|         for c in positive:
 | |
|             create_cond_with_same_area_if_none(negative, c)
 | |
|         for c in negative:
 | |
|             create_cond_with_same_area_if_none(positive, c)
 | |
| 
 | |
|         pre_run_control(self.model_wrap, negative + positive)
 | |
| 
 | |
|         apply_empty_x_to_equal_area(
 | |
|             list(filter(lambda c: c[1].get('control_apply_to_uncond', False) == True, positive)), negative, 'control',
 | |
|             lambda cond_cnets, x: cond_cnets[x])
 | |
|         apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])
 | |
| 
 | |
|         if self.model.is_adm():
 | |
|             positive = encode_adm(self.model, positive, noise.shape[0], noise.shape[3], noise.shape[2], self.device,
 | |
|                                   "positive")
 | |
|             negative = encode_adm(self.model, negative, noise.shape[0], noise.shape[3], noise.shape[2], self.device,
 | |
|                                   "negative")
 | |
| 
 | |
|         refiner_positive = refiner_positive[:]
 | |
|         refiner_negative = refiner_negative[:]
 | |
| 
 | |
|         resolve_cond_masks(refiner_positive, noise.shape[2], noise.shape[3], self.device)
 | |
|         resolve_cond_masks(refiner_negative, noise.shape[2], noise.shape[3], self.device)
 | |
| 
 | |
|         calculate_start_end_timesteps(self.refiner_model_wrap, refiner_positive)
 | |
|         calculate_start_end_timesteps(self.refiner_model_wrap, refiner_negative)
 | |
| 
 | |
|         # make sure each cond area has an opposite one with the same area
 | |
|         for c in refiner_positive:
 | |
|             create_cond_with_same_area_if_none(refiner_negative, c)
 | |
|         for c in refiner_negative:
 | |
|             create_cond_with_same_area_if_none(refiner_positive, c)
 | |
| 
 | |
|         if self.model.is_adm():
 | |
|             refiner_positive = encode_adm(self.refiner_model, refiner_positive, noise.shape[0],
 | |
|                                           noise.shape[3], noise.shape[2], self.device, "positive")
 | |
|             refiner_negative = encode_adm(self.refiner_model, refiner_negative, noise.shape[0],
 | |
|                                           noise.shape[3], noise.shape[2], self.device, "negative")
 | |
| 
 | |
|         def refiner_switch():
 | |
|             modules.virtual_memory.try_move_to_virtual_memory(self.model_denoise.inner_model)
 | |
|             modules.virtual_memory.load_from_virtual_memory(self.refiner_model_denoise.inner_model)
 | |
|             comfy.model_management.load_model_gpu(self.refiner_model_patcher)
 | |
|             self.model_denoise.inner_model = self.refiner_model_denoise.inner_model
 | |
|             for i in range(len(positive)):
 | |
|                 positive[i] = refiner_positive[i]
 | |
|             for i in range(len(negative)):
 | |
|                 negative[i] = refiner_negative[i]
 | |
|             print('Refiner swapped.')
 | |
|             return
 | |
| 
 | |
|         def callback(step, x0, x, total_steps):
 | |
|             if step == refiner_switch_step:
 | |
|                 refiner_switch()
 | |
|             if callback_function is not None:
 | |
|                 callback_function(step, x0, x, total_steps)
 | |
| 
 | |
|         if latent_image is not None:
 | |
|             latent_image = self.model.process_latent_in(latent_image)
 | |
| 
 | |
|         extra_args = {"cond": positive, "uncond": negative, "cond_scale": cfg, "model_options": self.model_options,
 | |
|                       "seed": seed}
 | |
| 
 | |
|         cond_concat = None
 | |
|         if hasattr(self.model, 'concat_keys'):  # inpaint
 | |
|             cond_concat = []
 | |
|             for ck in self.model.concat_keys:
 | |
|                 if denoise_mask is not None:
 | |
|                     if ck == "mask":
 | |
|                         cond_concat.append(denoise_mask[:, :1])
 | |
|                     elif ck == "masked_image":
 | |
|                         cond_concat.append(
 | |
|                             latent_image)  # NOTE: the latent_image should be masked by the mask in pixel space
 | |
|                 else:
 | |
|                     if ck == "mask":
 | |
|                         cond_concat.append(torch.ones_like(noise)[:, :1])
 | |
|                     elif ck == "masked_image":
 | |
|                         cond_concat.append(blank_inpaint_image_like(noise))
 | |
|             extra_args["cond_concat"] = cond_concat
 | |
| 
 | |
|         if sigmas[0] != self.sigmas[0] or (self.denoise is not None and self.denoise < 1.0):
 | |
|             max_denoise = False
 | |
|         else:
 | |
|             max_denoise = True
 | |
| 
 | |
|         if self.sampler == "uni_pc":
 | |
|             samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas,
 | |
|                                           sampling_function=sampling_function, max_denoise=max_denoise,
 | |
|                                           extra_args=extra_args, noise_mask=denoise_mask, callback=callback,
 | |
|                                           disable=disable_pbar)
 | |
|         elif self.sampler == "uni_pc_bh2":
 | |
|             samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas,
 | |
|                                           sampling_function=sampling_function, max_denoise=max_denoise,
 | |
|                                           extra_args=extra_args, noise_mask=denoise_mask, callback=callback,
 | |
|                                           variant='bh2', disable=disable_pbar)
 | |
|         elif self.sampler == "ddim":
 | |
|             raise NotImplementedError('Swapped Refiner Does not support DDIM.')
 | |
|         else:
 | |
|             extra_args["denoise_mask"] = denoise_mask
 | |
|             self.model_k.latent_image = latent_image
 | |
|             self.model_k.noise = noise
 | |
| 
 | |
|             if max_denoise:
 | |
|                 noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0)
 | |
|             else:
 | |
|                 noise = noise * sigmas[0]
 | |
| 
 | |
|             k_callback = None
 | |
|             total_steps = len(sigmas) - 1
 | |
|             if callback is not None:
 | |
|                 k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)
 | |
| 
 | |
|             if latent_image is not None:
 | |
|                 noise += latent_image
 | |
|             if self.sampler == "dpm_fast":
 | |
|                 samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], total_steps,
 | |
|                                                                extra_args=extra_args, callback=k_callback,
 | |
|                                                                disable=disable_pbar)
 | |
|             elif self.sampler == "dpm_adaptive":
 | |
|                 samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0],
 | |
|                                                                    extra_args=extra_args, callback=k_callback,
 | |
|                                                                    disable=disable_pbar)
 | |
|             else:
 | |
|                 samples = getattr(k_diffusion_sampling, "sample_{}".format(self.sampler))(self.model_k, noise, sigmas,
 | |
|                                                                                           extra_args=extra_args,
 | |
|                                                                                           callback=k_callback,
 | |
|                                                                                           disable=disable_pbar)
 | |
| 
 | |
|         return self.model.process_latent_out(samples.to(torch.float32))
 |