48 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			48 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import modules.core as core
 | |
| import os
 | |
| import torch
 | |
| 
 | |
| from modules.path import modelfile_path, lorafile_path
 | |
| 
 | |
| 
 | |
| xl_base_filename = os.path.join(modelfile_path, 'sd_xl_base_1.0.safetensors')
 | |
| xl_refiner_filename = os.path.join(modelfile_path, 'sd_xl_refiner_1.0.safetensors')
 | |
| xl_base_offset_lora_filename = os.path.join(lorafile_path, 'sd_xl_offset_example-lora_1.0.safetensors')
 | |
| 
 | |
| xl_base = core.load_model(xl_base_filename)
 | |
| xl_base = core.load_lora(xl_base, xl_base_offset_lora_filename, strength_model=0.5, strength_clip=0.0)
 | |
| del xl_base.vae
 | |
| 
 | |
| xl_refiner = core.load_model(xl_refiner_filename)
 | |
| 
 | |
| 
 | |
| @torch.no_grad()
 | |
| def process(positive_prompt, negative_prompt, steps, switch, width, height, image_seed, callback):
 | |
|     positive_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt=positive_prompt)
 | |
|     negative_conditions = core.encode_prompt_condition(clip=xl_base.clip, prompt=negative_prompt)
 | |
| 
 | |
|     positive_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=positive_prompt)
 | |
|     negative_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=negative_prompt)
 | |
| 
 | |
|     empty_latent = core.generate_empty_latent(width=width, height=height, batch_size=1)
 | |
| 
 | |
|     sampled_latent = core.ksampler_with_refiner(
 | |
|         model=xl_base.unet,
 | |
|         positive=positive_conditions,
 | |
|         negative=negative_conditions,
 | |
|         refiner=xl_refiner.unet,
 | |
|         refiner_positive=positive_conditions_refiner,
 | |
|         refiner_negative=negative_conditions_refiner,
 | |
|         refiner_switch_step=switch,
 | |
|         latent=empty_latent,
 | |
|         steps=steps, start_step=0, last_step=steps, disable_noise=False, force_full_denoise=True,
 | |
|         seed=image_seed,
 | |
|         callback_function=callback
 | |
|     )
 | |
| 
 | |
|     decoded_latent = core.decode_vae(vae=xl_refiner.vae, latent_image=sampled_latent)
 | |
| 
 | |
|     images = core.image_to_numpy(decoded_latent)
 | |
| 
 | |
|     return images
 |