Fooocus/modules/default_pipeline.py
2023-09-10 17:48:03 -07:00

159 lines
4.8 KiB
Python

import modules.core as core
import os
import torch
import modules.path
from comfy.model_base import SDXL, SDXLRefiner
from modules.patch import cfg_patched
from modules.expansion import FooocusExpansion
xl_base: core.StableDiffusionModel = None
xl_base_hash = ''
xl_refiner: core.StableDiffusionModel = None
xl_refiner_hash = ''
xl_base_patched: core.StableDiffusionModel = None
xl_base_patched_hash = ''
def refresh_base_model(name):
global xl_base, xl_base_hash, xl_base_patched, xl_base_patched_hash
if xl_base_hash == str(name):
return
filename = os.path.join(modules.path.modelfile_path, name)
if xl_base is not None:
xl_base.to_meta()
xl_base = None
xl_base = core.load_model(filename)
if not isinstance(xl_base.unet.model, SDXL):
print('Model not supported. Fooocus only support SDXL model as the base model.')
xl_base = None
xl_base_hash = ''
refresh_base_model(modules.path.default_base_model_name)
xl_base_hash = name
xl_base_patched = xl_base
xl_base_patched_hash = ''
return
xl_base_hash = name
xl_base_patched = xl_base
xl_base_patched_hash = ''
print(f'Base model loaded: {xl_base_hash}')
return
def refresh_refiner_model(name):
global xl_refiner, xl_refiner_hash
if xl_refiner_hash == str(name):
return
if name == 'None':
xl_refiner = None
xl_refiner_hash = ''
print(f'Refiner unloaded.')
return
filename = os.path.join(modules.path.modelfile_path, name)
if xl_refiner is not None:
xl_refiner.to_meta()
xl_refiner = None
xl_refiner = core.load_model(filename)
if not isinstance(xl_refiner.unet.model, SDXLRefiner):
print('Model not supported. Fooocus only support SDXL refiner as the refiner.')
xl_refiner = None
xl_refiner_hash = ''
print(f'Refiner unloaded.')
return
xl_refiner_hash = name
print(f'Refiner model loaded: {xl_refiner_hash}')
xl_refiner.vae.first_stage_model.to('meta')
xl_refiner.vae = None
return
def refresh_loras(loras):
global xl_base, xl_base_patched, xl_base_patched_hash
if xl_base_patched_hash == str(loras):
return
model = xl_base
for name, weight in loras:
if name == 'None':
continue
filename = os.path.join(modules.path.lorafile_path, name)
model = core.load_lora(model, filename, strength_model=weight, strength_clip=weight)
xl_base_patched = model
xl_base_patched_hash = str(loras)
print(f'LoRAs loaded: {xl_base_patched_hash}')
return
refresh_base_model(modules.path.default_base_model_name)
refresh_refiner_model(modules.path.default_refiner_model_name)
refresh_loras([(modules.path.default_lora_name, 0.5), ('None', 0.5), ('None', 0.5), ('None', 0.5), ('None', 0.5)])
expansion = FooocusExpansion()
def process_prompt(text):
base_cond = core.encode_prompt_condition(clip=xl_base_patched.clip, prompt=text)
if xl_refiner is not None:
refiner_cond = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=text)
else:
refiner_cond = None
return base_cond, refiner_cond
@torch.no_grad()
def process_diffusion(positive_cond, negative_cond, steps, switch, width, height, image_seed, callback):
if xl_base is not None:
xl_base.unet.model_options['sampler_cfg_function'] = cfg_patched
if xl_base_patched is not None:
xl_base_patched.unet.model_options['sampler_cfg_function'] = cfg_patched
if xl_refiner is not None:
xl_refiner.unet.model_options['sampler_cfg_function'] = cfg_patched
empty_latent = core.generate_empty_latent(width=width, height=height, batch_size=1)
if xl_refiner is not None:
sampled_latent = core.ksampler_with_refiner(
model=xl_base_patched.unet,
positive=positive_cond[0],
negative=negative_cond[0],
refiner=xl_refiner.unet,
refiner_positive=positive_cond[1],
refiner_negative=negative_cond[1],
refiner_switch_step=switch,
latent=empty_latent,
steps=steps, start_step=0, last_step=steps, disable_noise=False, force_full_denoise=True,
seed=image_seed,
callback_function=callback
)
else:
sampled_latent = core.ksampler(
model=xl_base_patched.unet,
positive=positive_cond[0],
negative=negative_cond[0],
latent=empty_latent,
steps=steps, start_step=0, last_step=steps, disable_noise=False, force_full_denoise=True,
seed=image_seed,
callback_function=callback
)
decoded_latent = core.decode_vae(vae=xl_base_patched.vae, latent_image=sampled_latent)
images = core.image_to_numpy(decoded_latent)
return images