469 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			469 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import torch
 | |
| import comfy.model_base
 | |
| import comfy.ldm.modules.diffusionmodules.openaimodel
 | |
| import comfy.samplers
 | |
| import comfy.k_diffusion.external
 | |
| import comfy.model_management
 | |
| import modules.anisotropic as anisotropic
 | |
| import comfy.ldm.modules.attention
 | |
| import comfy.k_diffusion.sampling
 | |
| import comfy.sd1_clip
 | |
| import modules.inpaint_worker as inpaint_worker
 | |
| import comfy.ldm.modules.diffusionmodules.openaimodel
 | |
| import comfy.ldm.modules.diffusionmodules.model
 | |
| import comfy.sd
 | |
| import comfy.cldm.cldm
 | |
| import comfy.model_patcher
 | |
| import comfy.samplers
 | |
| import modules.advanced_parameters as advanced_parameters
 | |
| 
 | |
| from comfy.k_diffusion import utils
 | |
| from comfy.k_diffusion.sampling import BrownianTreeNoiseSampler, trange
 | |
| from comfy.ldm.modules.diffusionmodules.openaimodel import timestep_embedding, forward_timestep_embed
 | |
| 
 | |
| 
 | |
| sharpness = 2.0
 | |
| 
 | |
| adm_scaler_end = 0.3
 | |
| positive_adm_scale = 1.5
 | |
| negative_adm_scale = 0.8
 | |
| 
 | |
| cfg_x0 = 0.0
 | |
| cfg_s = 1.0
 | |
| cfg_cin = 1.0
 | |
| adaptive_cfg = 0.7
 | |
| 
 | |
| 
 | |
| def calculate_weight_patched(self, patches, weight, key):
 | |
|     for p in patches:
 | |
|         alpha = p[0]
 | |
|         v = p[1]
 | |
|         strength_model = p[2]
 | |
| 
 | |
|         if strength_model != 1.0:
 | |
|             weight *= strength_model
 | |
| 
 | |
|         if isinstance(v, list):
 | |
|             v = (self.calculate_weight(v[1:], v[0].clone(), key),)
 | |
| 
 | |
|         if len(v) == 1:
 | |
|             w1 = v[0]
 | |
|             if alpha != 0.0:
 | |
|                 if w1.shape != weight.shape:
 | |
|                     print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
 | |
|                 else:
 | |
|                     weight += alpha * comfy.model_management.cast_to_device(w1, weight.device, weight.dtype)
 | |
|         elif len(v) == 3:
 | |
|             # fooocus
 | |
|             w1 = comfy.model_management.cast_to_device(v[0], weight.device, torch.float32)
 | |
|             w_min = comfy.model_management.cast_to_device(v[1], weight.device, torch.float32)
 | |
|             w_max = comfy.model_management.cast_to_device(v[2], weight.device, torch.float32)
 | |
|             w1 = (w1 / 255.0) * (w_max - w_min) + w_min
 | |
|             if alpha != 0.0:
 | |
|                 if w1.shape != weight.shape:
 | |
|                     print("WARNING SHAPE MISMATCH {} FOOOCUS WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
 | |
|                 else:
 | |
|                     weight += alpha * comfy.model_management.cast_to_device(w1, weight.device, weight.dtype)
 | |
|         elif len(v) == 4:  # lora/locon
 | |
|             mat1 = comfy.model_management.cast_to_device(v[0], weight.device, torch.float32)
 | |
|             mat2 = comfy.model_management.cast_to_device(v[1], weight.device, torch.float32)
 | |
|             if v[2] is not None:
 | |
|                 alpha *= v[2] / mat2.shape[0]
 | |
|             if v[3] is not None:
 | |
|                 # locon mid weights, hopefully the math is fine because I didn't properly test it
 | |
|                 mat3 = comfy.model_management.cast_to_device(v[3], weight.device, torch.float32)
 | |
|                 final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
 | |
|                 mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1),
 | |
|                                 mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
 | |
|             try:
 | |
|                 weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape(
 | |
|                     weight.shape).type(weight.dtype)
 | |
|             except Exception as e:
 | |
|                 print("ERROR", key, e)
 | |
|         elif len(v) == 8:  # lokr
 | |
|             w1 = v[0]
 | |
|             w2 = v[1]
 | |
|             w1_a = v[3]
 | |
|             w1_b = v[4]
 | |
|             w2_a = v[5]
 | |
|             w2_b = v[6]
 | |
|             t2 = v[7]
 | |
|             dim = None
 | |
| 
 | |
|             if w1 is None:
 | |
|                 dim = w1_b.shape[0]
 | |
|                 w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, torch.float32),
 | |
|                               comfy.model_management.cast_to_device(w1_b, weight.device, torch.float32))
 | |
|             else:
 | |
|                 w1 = comfy.model_management.cast_to_device(w1, weight.device, torch.float32)
 | |
| 
 | |
|             if w2 is None:
 | |
|                 dim = w2_b.shape[0]
 | |
|                 if t2 is None:
 | |
|                     w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32),
 | |
|                                   comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32))
 | |
|                 else:
 | |
|                     w2 = torch.einsum('i j k l, j r, i p -> p r k l',
 | |
|                                       comfy.model_management.cast_to_device(t2, weight.device, torch.float32),
 | |
|                                       comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32),
 | |
|                                       comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32))
 | |
|             else:
 | |
|                 w2 = comfy.model_management.cast_to_device(w2, weight.device, torch.float32)
 | |
| 
 | |
|             if len(w2.shape) == 4:
 | |
|                 w1 = w1.unsqueeze(2).unsqueeze(2)
 | |
|             if v[2] is not None and dim is not None:
 | |
|                 alpha *= v[2] / dim
 | |
| 
 | |
|             try:
 | |
|                 weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype)
 | |
|             except Exception as e:
 | |
|                 print("ERROR", key, e)
 | |
|         else:  # loha
 | |
|             w1a = v[0]
 | |
|             w1b = v[1]
 | |
|             if v[2] is not None:
 | |
|                 alpha *= v[2] / w1b.shape[0]
 | |
|             w2a = v[3]
 | |
|             w2b = v[4]
 | |
|             if v[5] is not None:  # cp decomposition
 | |
|                 t1 = v[5]
 | |
|                 t2 = v[6]
 | |
|                 m1 = torch.einsum('i j k l, j r, i p -> p r k l',
 | |
|                                   comfy.model_management.cast_to_device(t1, weight.device, torch.float32),
 | |
|                                   comfy.model_management.cast_to_device(w1b, weight.device, torch.float32),
 | |
|                                   comfy.model_management.cast_to_device(w1a, weight.device, torch.float32))
 | |
| 
 | |
|                 m2 = torch.einsum('i j k l, j r, i p -> p r k l',
 | |
|                                   comfy.model_management.cast_to_device(t2, weight.device, torch.float32),
 | |
|                                   comfy.model_management.cast_to_device(w2b, weight.device, torch.float32),
 | |
|                                   comfy.model_management.cast_to_device(w2a, weight.device, torch.float32))
 | |
|             else:
 | |
|                 m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, torch.float32),
 | |
|                               comfy.model_management.cast_to_device(w1b, weight.device, torch.float32))
 | |
|                 m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, torch.float32),
 | |
|                               comfy.model_management.cast_to_device(w2b, weight.device, torch.float32))
 | |
| 
 | |
|             try:
 | |
|                 weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype)
 | |
|             except Exception as e:
 | |
|                 print("ERROR", key, e)
 | |
| 
 | |
|     return weight
 | |
| 
 | |
| 
 | |
| def compute_cfg(uncond, cond, cfg_scale, t):
 | |
|     global adaptive_cfg
 | |
| 
 | |
|     mimic_cfg = float(adaptive_cfg)
 | |
|     real_cfg = float(cfg_scale)
 | |
| 
 | |
|     real_eps = uncond + real_cfg * (cond - uncond)
 | |
| 
 | |
|     if cfg_scale < adaptive_cfg:
 | |
|         return real_eps
 | |
| 
 | |
|     mimicked_eps = uncond + mimic_cfg * (cond - uncond)
 | |
| 
 | |
|     return real_eps * t + mimicked_eps * (1 - t)
 | |
| 
 | |
| 
 | |
| def patched_sampler_cfg_function(args):
 | |
|     global cfg_x0, cfg_s
 | |
| 
 | |
|     positive_eps = args['cond']
 | |
|     negative_eps = args['uncond']
 | |
|     cfg_scale = args['cond_scale']
 | |
| 
 | |
|     positive_x0 = args['cond'] * cfg_s + cfg_x0
 | |
|     t = 1.0 - (args['timestep'] / 999.0)[:, None, None, None].clone()
 | |
|     alpha = 0.001 * sharpness * t
 | |
| 
 | |
|     positive_eps_degraded = anisotropic.adaptive_anisotropic_filter(x=positive_eps, g=positive_x0)
 | |
|     positive_eps_degraded_weighted = positive_eps_degraded * alpha + positive_eps * (1.0 - alpha)
 | |
| 
 | |
|     return compute_cfg(uncond=negative_eps, cond=positive_eps_degraded_weighted, cfg_scale=cfg_scale, t=t)
 | |
| 
 | |
| 
 | |
| def patched_discrete_eps_ddpm_denoiser_forward(self, input, sigma, **kwargs):
 | |
|     global cfg_x0, cfg_s, cfg_cin
 | |
|     c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
 | |
|     cfg_x0, cfg_s, cfg_cin = input, c_out, c_in
 | |
|     eps = self.get_eps(input * c_in, self.sigma_to_t(sigma), **kwargs)
 | |
|     return input + eps * c_out
 | |
| 
 | |
| 
 | |
| def patched_model_function_wrapper(func, args):
 | |
|     x = args['input']
 | |
|     t = args['timestep']
 | |
|     c = args['c']
 | |
|     return func(x, t, **c)
 | |
| 
 | |
| 
 | |
| def sdxl_encode_adm_patched(self, **kwargs):
 | |
|     global positive_adm_scale, negative_adm_scale
 | |
| 
 | |
|     clip_pooled = comfy.model_base.sdxl_pooled(kwargs, self.noise_augmentor)
 | |
|     width = kwargs.get("width", 768)
 | |
|     height = kwargs.get("height", 768)
 | |
|     target_width = width
 | |
|     target_height = height
 | |
| 
 | |
|     if kwargs.get("prompt_type", "") == "negative":
 | |
|         width = float(width) * negative_adm_scale
 | |
|         height = float(height) * negative_adm_scale
 | |
|     elif kwargs.get("prompt_type", "") == "positive":
 | |
|         width = float(width) * positive_adm_scale
 | |
|         height = float(height) * positive_adm_scale
 | |
| 
 | |
|     # Avoid artifacts
 | |
|     width = int(width)
 | |
|     height = int(height)
 | |
|     crop_w = 0
 | |
|     crop_h = 0
 | |
|     target_width = int(target_width)
 | |
|     target_height = int(target_height)
 | |
| 
 | |
|     out_a = [self.embedder(torch.Tensor([height])), self.embedder(torch.Tensor([width])),
 | |
|              self.embedder(torch.Tensor([crop_h])), self.embedder(torch.Tensor([crop_w])),
 | |
|              self.embedder(torch.Tensor([target_height])), self.embedder(torch.Tensor([target_width]))]
 | |
|     flat_a = torch.flatten(torch.cat(out_a)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
 | |
| 
 | |
|     out_b = [self.embedder(torch.Tensor([target_height])), self.embedder(torch.Tensor([target_width])),
 | |
|              self.embedder(torch.Tensor([crop_h])), self.embedder(torch.Tensor([crop_w])),
 | |
|              self.embedder(torch.Tensor([target_height])), self.embedder(torch.Tensor([target_width]))]
 | |
|     flat_b = torch.flatten(torch.cat(out_b)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
 | |
| 
 | |
|     return torch.cat((clip_pooled.to(flat_a.device), flat_a, clip_pooled.to(flat_b.device), flat_b), dim=1)
 | |
| 
 | |
| 
 | |
| def encode_token_weights_patched_with_a1111_method(self, token_weight_pairs):
 | |
|     to_encode = list(self.empty_tokens)
 | |
|     for x in token_weight_pairs:
 | |
|         tokens = list(map(lambda a: a[0], x))
 | |
|         to_encode.append(tokens)
 | |
| 
 | |
|     out, pooled = self.encode(to_encode)
 | |
| 
 | |
|     z_empty = out[0:1]
 | |
|     if pooled.shape[0] > 1:
 | |
|         first_pooled = pooled[1:2]
 | |
|     else:
 | |
|         first_pooled = pooled[0:1]
 | |
| 
 | |
|     output = []
 | |
|     for k in range(1, out.shape[0]):
 | |
|         z = out[k:k + 1]
 | |
|         original_mean = z.mean()
 | |
| 
 | |
|         for i in range(len(z)):
 | |
|             for j in range(len(z[i])):
 | |
|                 weight = token_weight_pairs[k - 1][j][1]
 | |
|                 z[i][j] = (z[i][j] - z_empty[0][j]) * weight + z_empty[0][j]
 | |
| 
 | |
|         new_mean = z.mean()
 | |
|         z = z * (original_mean / new_mean)
 | |
|         output.append(z)
 | |
| 
 | |
|     if len(output) == 0:
 | |
|         return z_empty.cpu(), first_pooled.cpu()
 | |
|     return torch.cat(output, dim=-2).cpu(), first_pooled.cpu()
 | |
| 
 | |
| 
 | |
| @torch.no_grad()
 | |
| def sample_dpmpp_fooocus_2m_sde_inpaint_seamless(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, **kwargs):
 | |
|     print('[Sampler] Inpaint sampler is activated.')
 | |
| 
 | |
|     sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
 | |
|     noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
 | |
| 
 | |
|     seed = extra_args.get("seed", None)
 | |
|     assert isinstance(seed, int)
 | |
| 
 | |
|     energy_generator = torch.Generator(device='cpu')
 | |
|     energy_generator.manual_seed(seed + 1)  # avoid bad results by using different seeds.
 | |
| 
 | |
|     def get_energy():
 | |
|         return torch.randn(x.size(), dtype=x.dtype, generator=energy_generator, device="cpu").to(x)
 | |
| 
 | |
|     sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
 | |
|     noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
 | |
|     extra_args = {} if extra_args is None else extra_args
 | |
|     s_in = x.new_ones([x.shape[0]])
 | |
| 
 | |
|     old_denoised, h_last, h = None, None, None
 | |
| 
 | |
|     latent_processor = model.inner_model.inner_model.inner_model.process_latent_in
 | |
|     inpaint_latent = None
 | |
|     inpaint_mask = None
 | |
| 
 | |
|     if inpaint_worker.current_task is not None:
 | |
|         inpaint_latent = latent_processor(inpaint_worker.current_task.latent).to(x)
 | |
|         inpaint_mask = inpaint_worker.current_task.latent_mask.to(x)
 | |
| 
 | |
|     def blend_latent(a, b, w):
 | |
|         return a * w + b * (1 - w)
 | |
| 
 | |
|     for i in trange(len(sigmas) - 1, disable=disable):
 | |
|         if inpaint_latent is None:
 | |
|             denoised = model(x, sigmas[i] * s_in, **extra_args)
 | |
|         else:
 | |
|             energy = get_energy() * sigmas[i] + inpaint_latent
 | |
|             x_prime = blend_latent(x, energy, inpaint_mask)
 | |
|             denoised = model(x_prime, sigmas[i] * s_in, **extra_args)
 | |
|             denoised = blend_latent(denoised, inpaint_latent, inpaint_mask)
 | |
|         if callback is not None:
 | |
|             callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
 | |
|         if sigmas[i + 1] == 0:
 | |
|             x = denoised
 | |
|         else:
 | |
|             t, s = -sigmas[i].log(), -sigmas[i + 1].log()
 | |
|             h = s - t
 | |
|             eta_h = eta * h
 | |
| 
 | |
|             x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
 | |
|             if old_denoised is not None:
 | |
|                 r = h_last / h
 | |
|                 x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
 | |
| 
 | |
|             x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (
 | |
|                         -2 * eta_h).expm1().neg().sqrt() * s_noise
 | |
| 
 | |
|         old_denoised = denoised
 | |
|         h_last = h
 | |
| 
 | |
|     return x
 | |
| 
 | |
| 
 | |
| def timed_adm(y, timesteps):
 | |
|     if isinstance(y, torch.Tensor) and int(y.dim()) == 2 and int(y.shape[1]) == 5632:
 | |
|         y_mask = (timesteps > 999.0 * (1.0 - float(adm_scaler_end))).to(y)[..., None]
 | |
|         y_with_adm = y[..., :2816].clone()
 | |
|         y_without_adm = y[..., 2816:].clone()
 | |
|         return y_with_adm * y_mask + y_without_adm * (1.0 - y_mask)
 | |
|     return y
 | |
| 
 | |
| 
 | |
| def patched_cldm_forward(self, x, hint, timesteps, context, y=None, **kwargs):
 | |
|     t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(self.dtype)
 | |
|     emb = self.time_embed(t_emb)
 | |
| 
 | |
|     guided_hint = self.input_hint_block(hint, emb, context)
 | |
| 
 | |
|     y = timed_adm(y, timesteps)
 | |
| 
 | |
|     outs = []
 | |
| 
 | |
|     hs = []
 | |
|     if self.num_classes is not None:
 | |
|         assert y.shape[0] == x.shape[0]
 | |
|         emb = emb + self.label_emb(y)
 | |
| 
 | |
|     h = x.type(self.dtype)
 | |
|     for module, zero_conv in zip(self.input_blocks, self.zero_convs):
 | |
|         if guided_hint is not None:
 | |
|             h = module(h, emb, context)
 | |
|             h += guided_hint
 | |
|             guided_hint = None
 | |
|         else:
 | |
|             h = module(h, emb, context)
 | |
|         outs.append(zero_conv(h, emb, context))
 | |
| 
 | |
|     h = self.middle_block(h, emb, context)
 | |
|     outs.append(self.middle_block_out(h, emb, context))
 | |
| 
 | |
|     if not advanced_parameters.disable_soft_cn:
 | |
|         for i in range(10):
 | |
|             k = float(i) / 9.0
 | |
|             outs[i] = outs[i] * (0.1 + 0.9 * k)
 | |
| 
 | |
|     return outs
 | |
| 
 | |
| 
 | |
| def patched_unet_forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
 | |
|     self.current_step = 1.0 - timesteps.to(x) / 999.0
 | |
| 
 | |
|     inpaint_fix = None
 | |
|     if inpaint_worker.current_task is not None:
 | |
|         inpaint_fix = inpaint_worker.current_task.inpaint_head_feature
 | |
| 
 | |
|     transformer_options["original_shape"] = list(x.shape)
 | |
|     transformer_options["current_index"] = 0
 | |
|     transformer_patches = transformer_options.get("patches", {})
 | |
| 
 | |
|     y = timed_adm(y, timesteps)
 | |
| 
 | |
|     hs = []
 | |
|     t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(self.dtype)
 | |
|     emb = self.time_embed(t_emb)
 | |
| 
 | |
|     if self.num_classes is not None:
 | |
|         assert y.shape[0] == x.shape[0]
 | |
|         emb = emb + self.label_emb(y)
 | |
| 
 | |
|     h = x.type(self.dtype)
 | |
|     for id, module in enumerate(self.input_blocks):
 | |
|         transformer_options["block"] = ("input", id)
 | |
|         h = forward_timestep_embed(module, h, emb, context, transformer_options)
 | |
| 
 | |
|         if inpaint_fix is not None:
 | |
|             if int(h.shape[1]) == int(inpaint_fix.shape[1]):
 | |
|                 h = h + inpaint_fix.to(h)
 | |
|                 inpaint_fix = None
 | |
| 
 | |
|         if control is not None and 'input' in control and len(control['input']) > 0:
 | |
|             ctrl = control['input'].pop()
 | |
|             if ctrl is not None:
 | |
|                 h += ctrl
 | |
|         hs.append(h)
 | |
|     transformer_options["block"] = ("middle", 0)
 | |
|     h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options)
 | |
|     if control is not None and 'middle' in control and len(control['middle']) > 0:
 | |
|         ctrl = control['middle'].pop()
 | |
|         if ctrl is not None:
 | |
|             h += ctrl
 | |
| 
 | |
|     for id, module in enumerate(self.output_blocks):
 | |
|         transformer_options["block"] = ("output", id)
 | |
|         hsp = hs.pop()
 | |
|         if control is not None and 'output' in control and len(control['output']) > 0:
 | |
|             ctrl = control['output'].pop()
 | |
|             if ctrl is not None:
 | |
|                 hsp += ctrl
 | |
| 
 | |
|         if "output_block_patch" in transformer_patches:
 | |
|             patch = transformer_patches["output_block_patch"]
 | |
|             for p in patch:
 | |
|                 h, hsp = p(h, hsp, transformer_options)
 | |
| 
 | |
|         h = torch.cat([h, hsp], dim=1)
 | |
|         del hsp
 | |
|         if len(hs) > 0:
 | |
|             output_shape = hs[-1].shape
 | |
|         else:
 | |
|             output_shape = None
 | |
|         h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape)
 | |
|     h = h.type(x.dtype)
 | |
|     if self.predict_codebook_ids:
 | |
|         return self.id_predictor(h)
 | |
|     else:
 | |
|         return self.out(h)
 | |
| 
 | |
| 
 | |
| def text_encoder_device_patched():
 | |
|     # Fooocus's style system uses text encoder much more times than comfy so this makes things much faster.
 | |
|     return comfy.model_management.get_torch_device()
 | |
| 
 | |
| 
 | |
| def patch_all():
 | |
|     comfy.samplers.SAMPLER_NAMES += ['dpmpp_fooocus_2m_sde_inpaint_seamless']
 | |
|     comfy.model_management.text_encoder_device = text_encoder_device_patched
 | |
|     comfy.model_patcher.ModelPatcher.calculate_weight = calculate_weight_patched
 | |
|     comfy.cldm.cldm.ControlNet.forward = patched_cldm_forward
 | |
|     comfy.ldm.modules.diffusionmodules.openaimodel.UNetModel.forward = patched_unet_forward
 | |
|     comfy.k_diffusion.sampling.sample_dpmpp_fooocus_2m_sde_inpaint_seamless = sample_dpmpp_fooocus_2m_sde_inpaint_seamless
 | |
|     comfy.k_diffusion.external.DiscreteEpsDDPMDenoiser.forward = patched_discrete_eps_ddpm_denoiser_forward
 | |
|     comfy.model_base.SDXL.encode_adm = sdxl_encode_adm_patched
 | |
|     comfy.sd1_clip.ClipTokenWeightEncoder.encode_token_weights = encode_token_weights_patched_with_a1111_method
 | |
|     return
 |