396 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			396 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import threading
 | |
| 
 | |
| import numpy as np
 | |
| import torch
 | |
| 
 | |
| buffer = []
 | |
| outputs = []
 | |
| default_image = None
 | |
| 
 | |
| 
 | |
| def worker():
 | |
|     global buffer, outputs, default_image
 | |
| 
 | |
|     import time
 | |
|     import shared
 | |
|     import random
 | |
|     import copy
 | |
|     import modules.default_pipeline as pipeline
 | |
|     import modules.core as core
 | |
|     import modules.flags as flags
 | |
|     import modules.path
 | |
|     import modules.patch
 | |
|     import modules.virtual_memory as virtual_memory
 | |
|     import comfy.model_management
 | |
|     import modules.inpaint_worker as inpaint_worker
 | |
| 
 | |
|     from modules.sdxl_styles import apply_style, aspect_ratios, fooocus_expansion
 | |
|     from modules.private_logger import log
 | |
|     from modules.expansion import safe_str
 | |
|     from modules.util import join_prompts, remove_empty_str, HWC3, resize_image, image_is_generated_in_current_ui
 | |
|     from modules.upscaler import perform_upscale
 | |
| 
 | |
|     try:
 | |
|         async_gradio_app = shared.gradio_root
 | |
|         flag = f'''App started successful. Use the app with {str(async_gradio_app.local_url)} or {str(async_gradio_app.server_name)}:{str(async_gradio_app.server_port)}'''
 | |
|         if async_gradio_app.share:
 | |
|             flag += f''' or {async_gradio_app.share_url}'''
 | |
|         print(flag)
 | |
|     except Exception as e:
 | |
|         print(e)
 | |
| 
 | |
|     def progressbar(number, text):
 | |
|         print(f'[Fooocus] {text}')
 | |
|         outputs.append(['preview', (number, text, None)])
 | |
| 
 | |
|     @torch.no_grad()
 | |
|     @torch.inference_mode()
 | |
|     def handler(task):
 | |
|         global default_image
 | |
| 
 | |
|         prompt, negative_prompt, style_selections, performance_selction, \
 | |
|             aspect_ratios_selction, image_number, image_seed, sharpness, \
 | |
|             base_model_name, refiner_model_name, \
 | |
|             l1, w1, l2, w2, l3, w3, l4, w4, l5, w5, \
 | |
|             input_image_checkbox, current_tab, \
 | |
|             uov_method, uov_input_image, outpaint_selections, inpaint_input_image = task
 | |
| 
 | |
|         outpaint_selections = [o.lower() for o in outpaint_selections]
 | |
| 
 | |
|         loras = [(l1, w1), (l2, w2), (l3, w3), (l4, w4), (l5, w5)]
 | |
|         loras_user_raw_input = copy.deepcopy(loras)
 | |
| 
 | |
|         raw_style_selections = copy.deepcopy(style_selections)
 | |
| 
 | |
|         uov_method = uov_method.lower()
 | |
| 
 | |
|         if fooocus_expansion in style_selections:
 | |
|             use_expansion = True
 | |
|             style_selections.remove(fooocus_expansion)
 | |
|         else:
 | |
|             use_expansion = False
 | |
| 
 | |
|         use_style = len(style_selections) > 0
 | |
|         modules.patch.sharpness = sharpness
 | |
|         modules.patch.negative_adm = True
 | |
|         initial_latent = None
 | |
|         denoising_strength = 1.0
 | |
|         tiled = False
 | |
|         inpaint_worker.current_task = None
 | |
| 
 | |
|         if performance_selction == 'Speed':
 | |
|             steps = 30
 | |
|             switch = 20
 | |
|         else:
 | |
|             steps = 60
 | |
|             switch = 40
 | |
| 
 | |
|         pipeline.clear_all_caches()  # save memory
 | |
| 
 | |
|         width, height = aspect_ratios[aspect_ratios_selction]
 | |
| 
 | |
|         if input_image_checkbox:
 | |
|             progressbar(0, 'Image processing ...')
 | |
|             if current_tab == 'uov' and uov_method != flags.disabled and uov_input_image is not None:
 | |
|                 uov_input_image = HWC3(uov_input_image)
 | |
|                 default_image = uov_input_image
 | |
|                 if 'vary' in uov_method:
 | |
|                     if not image_is_generated_in_current_ui(uov_input_image, ui_width=width, ui_height=height):
 | |
|                         uov_input_image = resize_image(uov_input_image, width=width, height=height)
 | |
|                         print(f'Resolution corrected - users are uploading their own images.')
 | |
|                     else:
 | |
|                         print(f'Processing images generated by Fooocus.')
 | |
|                     if 'subtle' in uov_method:
 | |
|                         denoising_strength = 0.5
 | |
|                     if 'strong' in uov_method:
 | |
|                         denoising_strength = 0.85
 | |
|                     initial_pixels = core.numpy_to_pytorch(uov_input_image)
 | |
|                     progressbar(0, 'VAE encoding ...')
 | |
|                     initial_latent = core.encode_vae(vae=pipeline.xl_base_patched.vae, pixels=initial_pixels)
 | |
|                     B, C, H, W = initial_latent['samples'].shape
 | |
|                     width = W * 8
 | |
|                     height = H * 8
 | |
|                     print(f'Final resolution is {str((height, width))}.')
 | |
|                 elif 'upscale' in uov_method:
 | |
|                     H, W, C = uov_input_image.shape
 | |
|                     progressbar(0, f'Upscaling image from {str((H, W))} ...')
 | |
| 
 | |
|                     uov_input_image = core.numpy_to_pytorch(uov_input_image)
 | |
|                     uov_input_image = perform_upscale(uov_input_image)
 | |
|                     uov_input_image = core.pytorch_to_numpy(uov_input_image)[0]
 | |
|                     print(f'Image upscaled.')
 | |
| 
 | |
|                     if '1.5x' in uov_method:
 | |
|                         f = 1.5
 | |
|                     elif '2x' in uov_method:
 | |
|                         f = 2.0
 | |
|                     else:
 | |
|                         f = 1.0
 | |
| 
 | |
|                     width_f = int(width * f)
 | |
|                     height_f = int(height * f)
 | |
| 
 | |
|                     if image_is_generated_in_current_ui(uov_input_image, ui_width=width_f, ui_height=height_f):
 | |
|                         uov_input_image = resize_image(uov_input_image, width=int(W * f), height=int(H * f))
 | |
|                         print(f'Processing images generated by Fooocus.')
 | |
|                     else:
 | |
|                         uov_input_image = resize_image(uov_input_image, width=width_f, height=height_f)
 | |
|                         print(f'Resolution corrected - users are uploading their own images.')
 | |
| 
 | |
|                     H, W, C = uov_input_image.shape
 | |
|                     image_is_super_large = H * W > 2800 * 2800
 | |
| 
 | |
|                     if 'fast' in uov_method:
 | |
|                         direct_return = True
 | |
|                     elif image_is_super_large:
 | |
|                         print('Image is too large. Directly returned the SR image. '
 | |
|                               'Usually directly return SR image at 4K resolution '
 | |
|                               'yields better results than SDXL diffusion.')
 | |
|                         direct_return = True
 | |
|                     else:
 | |
|                         direct_return = False
 | |
| 
 | |
|                     if direct_return:
 | |
|                         d = [('Upscale (Fast)', '2x')]
 | |
|                         log(uov_input_image, d, single_line_number=1)
 | |
|                         outputs.append(['results', [uov_input_image]])
 | |
|                         return
 | |
| 
 | |
|                     tiled = True
 | |
|                     denoising_strength = 1.0 - 0.618
 | |
|                     steps = int(steps * 0.618)
 | |
|                     switch = int(steps * 0.67)
 | |
|                     initial_pixels = core.numpy_to_pytorch(uov_input_image)
 | |
|                     progressbar(0, 'VAE encoding ...')
 | |
| 
 | |
|                     initial_latent = core.encode_vae(vae=pipeline.xl_base_patched.vae, pixels=initial_pixels, tiled=True)
 | |
|                     B, C, H, W = initial_latent['samples'].shape
 | |
|                     width = W * 8
 | |
|                     height = H * 8
 | |
|                     print(f'Final resolution is {str((height, width))}.')
 | |
|             if current_tab == 'inpaint' and isinstance(inpaint_input_image, dict):
 | |
|                 inpaint_image = inpaint_input_image['image']
 | |
|                 inpaint_mask = inpaint_input_image['mask'][:, :, 0]
 | |
|                 default_image = inpaint_image
 | |
|                 if isinstance(inpaint_image, np.ndarray) and isinstance(inpaint_mask, np.ndarray) \
 | |
|                         and (np.any(inpaint_mask > 127) or len(outpaint_selections) > 0):
 | |
|                     if len(outpaint_selections) > 0:
 | |
|                         H, W, C = inpaint_image.shape
 | |
|                         if 'top' in outpaint_selections:
 | |
|                             inpaint_image = np.pad(inpaint_image, [[int(H * 0.3), 0], [0, 0], [0, 0]], mode='edge')
 | |
|                             inpaint_mask = np.pad(inpaint_mask, [[int(H * 0.3), 0], [0, 0]], mode='constant', constant_values=255)
 | |
|                         if 'bottom' in outpaint_selections:
 | |
|                             inpaint_image = np.pad(inpaint_image, [[0, int(H * 0.3)], [0, 0], [0, 0]], mode='edge')
 | |
|                             inpaint_mask = np.pad(inpaint_mask, [[0, int(H * 0.3)], [0, 0]], mode='constant', constant_values=255)
 | |
| 
 | |
|                         H, W, C = inpaint_image.shape
 | |
|                         if 'left' in outpaint_selections:
 | |
|                             inpaint_image = np.pad(inpaint_image, [[0, 0], [int(H * 0.3), 0], [0, 0]], mode='edge')
 | |
|                             inpaint_mask = np.pad(inpaint_mask, [[0, 0], [int(H * 0.3), 0]], mode='constant', constant_values=255)
 | |
|                         if 'right' in outpaint_selections:
 | |
|                             inpaint_image = np.pad(inpaint_image, [[0, 0], [0, int(H * 0.3)], [0, 0]], mode='edge')
 | |
|                             inpaint_mask = np.pad(inpaint_mask, [[0, 0], [0, int(H * 0.3)]], mode='constant', constant_values=255)
 | |
| 
 | |
|                         inpaint_image = np.ascontiguousarray(inpaint_image.copy())
 | |
|                         inpaint_mask = np.ascontiguousarray(inpaint_mask.copy())
 | |
| 
 | |
|                     inpaint_worker.current_task = inpaint_worker.InpaintWorker(image=inpaint_image, mask=inpaint_mask,
 | |
|                                                                                is_outpaint=len(outpaint_selections) > 0)
 | |
| 
 | |
|                     # print(f'Inpaint task: {str((height, width))}')
 | |
|                     # outputs.append(['results', inpaint_worker.current_task.visualize_mask_processing()])
 | |
|                     # return
 | |
| 
 | |
|                     progressbar(0, 'Downloading inpainter ...')
 | |
|                     inpaint_head_model_path, inpaint_patch_model_path = modules.path.downloading_inpaint_models()
 | |
|                     loras += [(inpaint_patch_model_path, 1.0)]
 | |
| 
 | |
|                     inpaint_pixels = core.numpy_to_pytorch(inpaint_worker.current_task.image_ready)
 | |
|                     progressbar(0, 'VAE encoding ...')
 | |
|                     initial_latent = core.encode_vae(vae=pipeline.xl_base_patched.vae, pixels=inpaint_pixels)
 | |
|                     inpaint_latent = initial_latent['samples']
 | |
|                     B, C, H, W = inpaint_latent.shape
 | |
|                     inpaint_mask = core.numpy_to_pytorch(inpaint_worker.current_task.mask_ready[None])
 | |
|                     inpaint_mask = torch.nn.functional.avg_pool2d(inpaint_mask, (8, 8))
 | |
|                     inpaint_mask = torch.nn.functional.interpolate(inpaint_mask, (H, W), mode='bilinear')
 | |
|                     inpaint_worker.current_task.load_latent(latent=inpaint_latent, mask=inpaint_mask)
 | |
| 
 | |
|                     progressbar(0, 'VAE inpaint encoding ...')
 | |
| 
 | |
|                     inpaint_mask = (inpaint_worker.current_task.mask_ready > 0).astype(np.float32)
 | |
|                     inpaint_mask = torch.tensor(inpaint_mask).float()
 | |
| 
 | |
|                     vae_dict = core.encode_vae_inpaint(
 | |
|                         mask=inpaint_mask, vae=pipeline.xl_base_patched.vae, pixels=inpaint_pixels)
 | |
| 
 | |
|                     inpaint_latent = vae_dict['samples']
 | |
|                     inpaint_mask = vae_dict['noise_mask']
 | |
|                     inpaint_worker.current_task.load_inpaint_guidance(latent=inpaint_latent, mask=inpaint_mask, model_path=inpaint_head_model_path)
 | |
| 
 | |
|                     B, C, H, W = inpaint_latent.shape
 | |
|                     height, width = inpaint_worker.current_task.image_raw.shape[:2]
 | |
|                     print(f'Final resolution is {str((height, width))}, latent is {str((H * 8, W * 8))}.')
 | |
| 
 | |
|         progressbar(1, 'Initializing ...')
 | |
| 
 | |
|         raw_prompt = prompt
 | |
|         raw_negative_prompt = negative_prompt
 | |
| 
 | |
|         prompts = remove_empty_str([safe_str(p) for p in prompt.split('\n')], default='')
 | |
|         negative_prompts = remove_empty_str([safe_str(p) for p in negative_prompt.split('\n')], default='')
 | |
| 
 | |
|         prompt = prompts[0]
 | |
|         negative_prompt = negative_prompts[0]
 | |
| 
 | |
|         extra_positive_prompts = prompts[1:] if len(prompts) > 1 else []
 | |
|         extra_negative_prompts = negative_prompts[1:] if len(negative_prompts) > 1 else []
 | |
| 
 | |
|         seed = image_seed
 | |
|         max_seed = int(1024 * 1024 * 1024)
 | |
|         if not isinstance(seed, int):
 | |
|             seed = random.randint(1, max_seed)
 | |
|         if seed < 0:
 | |
|             seed = - seed
 | |
|         seed = seed % max_seed
 | |
| 
 | |
|         progressbar(3, 'Loading models ...')
 | |
| 
 | |
|         pipeline.refresh_everything(
 | |
|             refiner_model_name=refiner_model_name,
 | |
|             base_model_name=base_model_name,
 | |
|             loras=loras)
 | |
| 
 | |
|         progressbar(3, 'Processing prompts ...')
 | |
| 
 | |
|         positive_basic_workloads = []
 | |
|         negative_basic_workloads = []
 | |
| 
 | |
|         if use_style:
 | |
|             for s in style_selections:
 | |
|                 p, n = apply_style(s, positive=prompt)
 | |
|                 positive_basic_workloads.append(p)
 | |
|                 negative_basic_workloads.append(n)
 | |
|         else:
 | |
|             positive_basic_workloads.append(prompt)
 | |
| 
 | |
|         negative_basic_workloads.append(negative_prompt)  # Always use independent workload for negative.
 | |
| 
 | |
|         positive_basic_workloads = positive_basic_workloads + extra_positive_prompts
 | |
|         negative_basic_workloads = negative_basic_workloads + extra_negative_prompts
 | |
| 
 | |
|         positive_basic_workloads = remove_empty_str(positive_basic_workloads, default=prompt)
 | |
|         negative_basic_workloads = remove_empty_str(negative_basic_workloads, default=negative_prompt)
 | |
| 
 | |
|         positive_top_k = len(positive_basic_workloads)
 | |
|         negative_top_k = len(negative_basic_workloads)
 | |
| 
 | |
|         tasks = [dict(
 | |
|             task_seed=seed + i,
 | |
|             positive=positive_basic_workloads,
 | |
|             negative=negative_basic_workloads,
 | |
|             expansion='',
 | |
|             c=[None, None],
 | |
|             uc=[None, None],
 | |
|         ) for i in range(image_number)]
 | |
| 
 | |
|         if use_expansion:
 | |
|             for i, t in enumerate(tasks):
 | |
|                 progressbar(5, f'Preparing Fooocus text #{i + 1} ...')
 | |
|                 expansion = pipeline.expansion(prompt, t['task_seed'])
 | |
|                 print(f'[Prompt Expansion] New suffix: {expansion}')
 | |
|                 t['expansion'] = expansion
 | |
|                 t['positive'] = copy.deepcopy(t['positive']) + [join_prompts(prompt, expansion)]  # Deep copy.
 | |
| 
 | |
|         for i, t in enumerate(tasks):
 | |
|             progressbar(7, f'Encoding base positive #{i + 1} ...')
 | |
|             t['c'][0] = pipeline.clip_encode(sd=pipeline.xl_base_patched, texts=t['positive'],
 | |
|                                              pool_top_k=positive_top_k)
 | |
| 
 | |
|         for i, t in enumerate(tasks):
 | |
|             progressbar(9, f'Encoding base negative #{i + 1} ...')
 | |
|             t['uc'][0] = pipeline.clip_encode(sd=pipeline.xl_base_patched, texts=t['negative'],
 | |
|                                               pool_top_k=negative_top_k)
 | |
| 
 | |
|         if pipeline.xl_refiner is not None:
 | |
|             virtual_memory.load_from_virtual_memory(pipeline.xl_refiner.clip.cond_stage_model)
 | |
| 
 | |
|             for i, t in enumerate(tasks):
 | |
|                 progressbar(11, f'Encoding refiner positive #{i + 1} ...')
 | |
|                 t['c'][1] = pipeline.clip_encode(sd=pipeline.xl_refiner, texts=t['positive'],
 | |
|                                                  pool_top_k=positive_top_k)
 | |
| 
 | |
|             for i, t in enumerate(tasks):
 | |
|                 progressbar(13, f'Encoding refiner negative #{i + 1} ...')
 | |
|                 t['uc'][1] = pipeline.clip_encode(sd=pipeline.xl_refiner, texts=t['negative'],
 | |
|                                                   pool_top_k=negative_top_k)
 | |
| 
 | |
|             virtual_memory.try_move_to_virtual_memory(pipeline.xl_refiner.clip.cond_stage_model)
 | |
| 
 | |
|         results = []
 | |
|         all_steps = steps * image_number
 | |
| 
 | |
|         def callback(step, x0, x, total_steps, y):
 | |
|             done_steps = current_task_id * steps + step
 | |
|             outputs.append(['preview', (
 | |
|                 int(15.0 + 85.0 * float(done_steps) / float(all_steps)),
 | |
|                 f'Step {step}/{total_steps} in the {current_task_id + 1}-th Sampling',
 | |
|                 y)])
 | |
| 
 | |
|         print(f'[ADM] Negative ADM = {modules.patch.negative_adm}')
 | |
| 
 | |
|         outputs.append(['preview', (13, 'Starting tasks ...', None)])
 | |
|         for current_task_id, task in enumerate(tasks):
 | |
|             try:
 | |
|                 imgs = pipeline.process_diffusion(
 | |
|                     positive_cond=task['c'],
 | |
|                     negative_cond=task['uc'],
 | |
|                     steps=steps,
 | |
|                     switch=switch,
 | |
|                     width=width,
 | |
|                     height=height,
 | |
|                     image_seed=task['task_seed'],
 | |
|                     callback=callback,
 | |
|                     latent=initial_latent,
 | |
|                     denoise=denoising_strength,
 | |
|                     tiled=tiled
 | |
|                 )
 | |
| 
 | |
|                 if inpaint_worker.current_task is not None:
 | |
|                     imgs = [inpaint_worker.current_task.post_process(x) for x in imgs]
 | |
| 
 | |
|                 for x in imgs:
 | |
|                     d = [
 | |
|                         ('Prompt', raw_prompt),
 | |
|                         ('Negative Prompt', raw_negative_prompt),
 | |
|                         ('Fooocus V2 Expansion', task['expansion']),
 | |
|                         ('Styles', str(raw_style_selections)),
 | |
|                         ('Performance', performance_selction),
 | |
|                         ('Resolution', str((width, height))),
 | |
|                         ('Sharpness', sharpness),
 | |
|                         ('Base Model', base_model_name),
 | |
|                         ('Refiner Model', refiner_model_name),
 | |
|                         ('Seed', task['task_seed'])
 | |
|                     ]
 | |
|                     for n, w in loras_user_raw_input:
 | |
|                         if n != 'None':
 | |
|                             d.append((f'LoRA [{n}] weight', w))
 | |
|                     log(x, d, single_line_number=3)
 | |
| 
 | |
|                 results += imgs
 | |
|             except comfy.model_management.InterruptProcessingException as e:
 | |
|                 print('User stopped')
 | |
|                 break
 | |
| 
 | |
|         outputs.append(['results', results])
 | |
|         return
 | |
| 
 | |
|     while True:
 | |
|         time.sleep(0.01)
 | |
|         if len(buffer) > 0:
 | |
|             task = buffer.pop(0)
 | |
|             handler(task)
 | |
|     pass
 | |
| 
 | |
| 
 | |
| threading.Thread(target=worker, daemon=True).start()
 |