83 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			83 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import cv2
 | |
| import numpy as np
 | |
| import modules.advanced_parameters as advanced_parameters
 | |
| 
 | |
| 
 | |
| def centered_canny(x: np.ndarray):
 | |
|     assert isinstance(x, np.ndarray)
 | |
|     assert x.ndim == 2 and x.dtype == np.uint8
 | |
| 
 | |
|     y = cv2.Canny(x, int(advanced_parameters.canny_low_threshold), int(advanced_parameters.canny_high_threshold))
 | |
|     y = y.astype(np.float32) / 255.0
 | |
|     return y
 | |
| 
 | |
| 
 | |
| def centered_canny_color(x: np.ndarray):
 | |
|     assert isinstance(x, np.ndarray)
 | |
|     assert x.ndim == 3 and x.shape[2] == 3
 | |
| 
 | |
|     result = [centered_canny(x[..., i]) for i in range(3)]
 | |
|     result = np.stack(result, axis=2)
 | |
|     return result
 | |
| 
 | |
| 
 | |
| def pyramid_canny_color(x: np.ndarray):
 | |
|     assert isinstance(x, np.ndarray)
 | |
|     assert x.ndim == 3 and x.shape[2] == 3
 | |
| 
 | |
|     H, W, C = x.shape
 | |
|     acc_edge = None
 | |
| 
 | |
|     for k in [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]:
 | |
|         Hs, Ws = int(H * k), int(W * k)
 | |
|         small = cv2.resize(x, (Ws, Hs), interpolation=cv2.INTER_AREA)
 | |
|         edge = centered_canny_color(small)
 | |
|         if acc_edge is None:
 | |
|             acc_edge = edge
 | |
|         else:
 | |
|             acc_edge = cv2.resize(acc_edge, (edge.shape[1], edge.shape[0]), interpolation=cv2.INTER_LINEAR)
 | |
|             acc_edge = acc_edge * 0.75 + edge * 0.25
 | |
| 
 | |
|     return acc_edge
 | |
| 
 | |
| 
 | |
| def norm255(x, low=4, high=96):
 | |
|     assert isinstance(x, np.ndarray)
 | |
|     assert x.ndim == 2 and x.dtype == np.float32
 | |
| 
 | |
|     v_min = np.percentile(x, low)
 | |
|     v_max = np.percentile(x, high)
 | |
| 
 | |
|     x -= v_min
 | |
|     x /= v_max - v_min
 | |
| 
 | |
|     return x * 255.0
 | |
| 
 | |
| 
 | |
| def canny_pyramid(x):
 | |
|     # For some reasons, SAI's Control-lora Canny seems to be trained on canny maps with non-standard resolutions.
 | |
|     # Then we use pyramid to use all resolutions to avoid missing any structure in specific resolutions.
 | |
| 
 | |
|     color_canny = pyramid_canny_color(x)
 | |
|     result = np.sum(color_canny, axis=2)
 | |
| 
 | |
|     return norm255(result, low=1, high=99).clip(0, 255).astype(np.uint8)
 | |
| 
 | |
| 
 | |
| def cpds(x):
 | |
|     # cv2.decolor is not "decolor", it is Cewu Lu's method
 | |
|     # See http://www.cse.cuhk.edu.hk/leojia/projects/color2gray/index.html
 | |
|     # See https://docs.opencv.org/3.0-beta/modules/photo/doc/decolor.html
 | |
| 
 | |
|     raw = cv2.GaussianBlur(x, (0, 0), 0.8)
 | |
|     density, boost = cv2.decolor(raw)
 | |
| 
 | |
|     raw = raw.astype(np.float32)
 | |
|     density = density.astype(np.float32)
 | |
|     boost = boost.astype(np.float32)
 | |
| 
 | |
|     offset = np.sum((raw - boost) ** 2.0, axis=2) ** 0.5
 | |
|     result = density + offset
 | |
| 
 | |
|     return norm255(result, low=4, high=96).clip(0, 255).astype(np.uint8)
 |