Fooocus/modules/patch.py
lllyasviel bbae307ef2
2.0.80 (#520)
* Rework many patches and some UI details.
* Speed up processing.
* Move Colab to independent branch.
* Implemented CFG Scale and TSNR correction when CFG is bigger than 10.
* Implemented Developer Mode with more options to debug.
2023-10-03 10:36:42 -07:00

417 lines
17 KiB
Python

import torch
import comfy.model_base
import comfy.ldm.modules.diffusionmodules.openaimodel
import comfy.samplers
import comfy.k_diffusion.external
import comfy.model_management
import modules.anisotropic as anisotropic
import comfy.ldm.modules.attention
import comfy.k_diffusion.sampling
import comfy.sd1_clip
import modules.inpaint_worker as inpaint_worker
import comfy.ldm.modules.diffusionmodules.openaimodel
import comfy.ldm.modules.diffusionmodules.model
import comfy.sd
import comfy.model_patcher
from comfy.k_diffusion import utils
from comfy.k_diffusion.sampling import BrownianTreeNoiseSampler, trange
from comfy.ldm.modules.diffusionmodules.openaimodel import timestep_embedding, forward_timestep_embed
sharpness = 2.0
positive_adm_scale = 1.5
negative_adm_scale = 0.8
cfg_x0 = 0.0
cfg_s = 1.0
cfg_cin = 1.0
adaptive_cfg = 0.7
def calculate_weight_patched(self, patches, weight, key):
for p in patches:
alpha = p[0]
v = p[1]
strength_model = p[2]
if strength_model != 1.0:
weight *= strength_model
if isinstance(v, list):
v = (self.calculate_weight(v[1:], v[0].clone(), key),)
if len(v) == 1:
w1 = v[0]
if alpha != 0.0:
if w1.shape != weight.shape:
print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
else:
weight += alpha * comfy.model_management.cast_to_device(w1, weight.device, weight.dtype)
elif len(v) == 3:
# fooocus
w1 = comfy.model_management.cast_to_device(v[0], weight.device, torch.float32)
w_min = comfy.model_management.cast_to_device(v[1], weight.device, torch.float32)
w_max = comfy.model_management.cast_to_device(v[2], weight.device, torch.float32)
w1 = (w1 / 255.0) * (w_max - w_min) + w_min
if alpha != 0.0:
if w1.shape != weight.shape:
print("WARNING SHAPE MISMATCH {} FOOOCUS WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
else:
weight += alpha * comfy.model_management.cast_to_device(w1, weight.device, weight.dtype)
elif len(v) == 4: # lora/locon
mat1 = comfy.model_management.cast_to_device(v[0], weight.device, torch.float32)
mat2 = comfy.model_management.cast_to_device(v[1], weight.device, torch.float32)
if v[2] is not None:
alpha *= v[2] / mat2.shape[0]
if v[3] is not None:
# locon mid weights, hopefully the math is fine because I didn't properly test it
mat3 = comfy.model_management.cast_to_device(v[3], weight.device, torch.float32)
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1),
mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
try:
weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape(
weight.shape).type(weight.dtype)
except Exception as e:
print("ERROR", key, e)
elif len(v) == 8: # lokr
w1 = v[0]
w2 = v[1]
w1_a = v[3]
w1_b = v[4]
w2_a = v[5]
w2_b = v[6]
t2 = v[7]
dim = None
if w1 is None:
dim = w1_b.shape[0]
w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, torch.float32),
comfy.model_management.cast_to_device(w1_b, weight.device, torch.float32))
else:
w1 = comfy.model_management.cast_to_device(w1, weight.device, torch.float32)
if w2 is None:
dim = w2_b.shape[0]
if t2 is None:
w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32),
comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32))
else:
w2 = torch.einsum('i j k l, j r, i p -> p r k l',
comfy.model_management.cast_to_device(t2, weight.device, torch.float32),
comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32),
comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32))
else:
w2 = comfy.model_management.cast_to_device(w2, weight.device, torch.float32)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
if v[2] is not None and dim is not None:
alpha *= v[2] / dim
try:
weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype)
except Exception as e:
print("ERROR", key, e)
else: # loha
w1a = v[0]
w1b = v[1]
if v[2] is not None:
alpha *= v[2] / w1b.shape[0]
w2a = v[3]
w2b = v[4]
if v[5] is not None: # cp decomposition
t1 = v[5]
t2 = v[6]
m1 = torch.einsum('i j k l, j r, i p -> p r k l',
comfy.model_management.cast_to_device(t1, weight.device, torch.float32),
comfy.model_management.cast_to_device(w1b, weight.device, torch.float32),
comfy.model_management.cast_to_device(w1a, weight.device, torch.float32))
m2 = torch.einsum('i j k l, j r, i p -> p r k l',
comfy.model_management.cast_to_device(t2, weight.device, torch.float32),
comfy.model_management.cast_to_device(w2b, weight.device, torch.float32),
comfy.model_management.cast_to_device(w2a, weight.device, torch.float32))
else:
m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, torch.float32),
comfy.model_management.cast_to_device(w1b, weight.device, torch.float32))
m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, torch.float32),
comfy.model_management.cast_to_device(w2b, weight.device, torch.float32))
try:
weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype)
except Exception as e:
print("ERROR", key, e)
return weight
def get_adaptive_weight_k(cfg_scale):
w = float(cfg_scale)
w -= 7.0
w /= 3.0
w = max(w, 0.01)
w = min(w, 0.99)
return w
def compute_cfg(uncond, cond, cfg_scale):
global adaptive_cfg
k = adaptive_cfg * get_adaptive_weight_k(cfg_scale)
x_cfg = uncond + cfg_scale * (cond - uncond)
ro_pos = torch.std(cond, dim=(1, 2, 3), keepdim=True)
ro_cfg = torch.std(x_cfg, dim=(1, 2, 3), keepdim=True)
x_rescaled = x_cfg * (ro_pos / ro_cfg)
x_final = k * x_rescaled + (1.0 - k) * x_cfg
return x_final
def patched_sampler_cfg_function(args):
global cfg_x0, cfg_s
positive_eps = args['cond']
negative_eps = args['uncond']
cfg_scale = args['cond_scale']
positive_x0 = args['cond'] * cfg_s + cfg_x0
t = 1.0 - (args['timestep'] / 999.0)[:, None, None, None].clone()
alpha = 0.001 * sharpness * t
positive_eps_degraded = anisotropic.adaptive_anisotropic_filter(x=positive_eps, g=positive_x0)
positive_eps_degraded_weighted = positive_eps_degraded * alpha + positive_eps * (1.0 - alpha)
return compute_cfg(uncond=negative_eps, cond=positive_eps_degraded_weighted, cfg_scale=cfg_scale)
def patched_discrete_eps_ddpm_denoiser_forward(self, input, sigma, **kwargs):
global cfg_x0, cfg_s, cfg_cin
c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
cfg_x0, cfg_s, cfg_cin = input, c_out, c_in
eps = self.get_eps(input * c_in, self.sigma_to_t(sigma), **kwargs)
return input + eps * c_out
def patched_model_function_wrapper(func, args):
global cfg_cin
x = args['input']
t = args['timestep']
c = args['c']
# is_uncond = torch.tensor(args['cond_or_uncond'])[:, None, None, None].to(x)
return func(x, t, **c)
def sdxl_encode_adm_patched(self, **kwargs):
global positive_adm_scale, negative_adm_scale
clip_pooled = comfy.model_base.sdxl_pooled(kwargs, self.noise_augmentor)
width = kwargs.get("width", 768)
height = kwargs.get("height", 768)
crop_w = kwargs.get("crop_w", 0)
crop_h = kwargs.get("crop_h", 0)
target_width = kwargs.get("target_width", width)
target_height = kwargs.get("target_height", height)
if kwargs.get("prompt_type", "") == "negative":
width = float(width) * negative_adm_scale
height = float(height) * negative_adm_scale
elif kwargs.get("prompt_type", "") == "positive":
width = float(width) * positive_adm_scale
height = float(height) * positive_adm_scale
# Avoid artifacts
width = int(width)
height = int(height)
crop_w = int(crop_w)
crop_h = int(crop_h)
target_width = int(target_width)
target_height = int(target_height)
out = []
out.append(self.embedder(torch.Tensor([height])))
out.append(self.embedder(torch.Tensor([width])))
out.append(self.embedder(torch.Tensor([crop_h])))
out.append(self.embedder(torch.Tensor([crop_w])))
out.append(self.embedder(torch.Tensor([target_height])))
out.append(self.embedder(torch.Tensor([target_width])))
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
def encode_token_weights_patched_with_a1111_method(self, token_weight_pairs):
to_encode = list(self.empty_tokens)
for x in token_weight_pairs:
tokens = list(map(lambda a: a[0], x))
to_encode.append(tokens)
out, pooled = self.encode(to_encode)
z_empty = out[0:1]
if pooled.shape[0] > 1:
first_pooled = pooled[1:2]
else:
first_pooled = pooled[0:1]
output = []
for k in range(1, out.shape[0]):
z = out[k:k + 1]
original_mean = z.mean()
for i in range(len(z)):
for j in range(len(z[i])):
weight = token_weight_pairs[k - 1][j][1]
z[i][j] = (z[i][j] - z_empty[0][j]) * weight + z_empty[0][j]
new_mean = z.mean()
z = z * (original_mean / new_mean)
output.append(z)
if len(output) == 0:
return z_empty.cpu(), first_pooled.cpu()
return torch.cat(output, dim=-2).cpu(), first_pooled.cpu()
@torch.no_grad()
def sample_dpmpp_fooocus_2m_sde_inpaint_seamless(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, **kwargs):
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
seed = extra_args.get("seed", None)
assert isinstance(seed, int)
energy_generator = torch.Generator(device='cpu')
energy_generator.manual_seed(seed + 1) # avoid bad results by using different seeds.
def get_energy():
return torch.randn(x.size(), dtype=x.dtype, generator=energy_generator, device="cpu").to(x)
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
old_denoised, h_last, h = None, None, None
latent_processor = model.inner_model.inner_model.inner_model.process_latent_in
inpaint_latent = None
inpaint_mask = None
if inpaint_worker.current_task is not None:
inpaint_latent = latent_processor(inpaint_worker.current_task.latent).to(x)
inpaint_mask = inpaint_worker.current_task.latent_mask.to(x)
def blend_latent(a, b, w):
return a * w + b * (1 - w)
for i in trange(len(sigmas) - 1, disable=disable):
if inpaint_latent is None:
denoised = model(x, sigmas[i] * s_in, **extra_args)
else:
energy = get_energy() * sigmas[i] + inpaint_latent
x_prime = blend_latent(x, energy, inpaint_mask)
denoised = model(x_prime, sigmas[i] * s_in, **extra_args)
denoised = blend_latent(denoised, inpaint_latent, inpaint_mask)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
x = denoised
else:
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
h = s - t
eta_h = eta * h
x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
if old_denoised is not None:
r = h_last / h
x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (
-2 * eta_h).expm1().neg().sqrt() * s_noise
old_denoised = denoised
h_last = h
return x
def patched_unet_forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
inpaint_fix = None
if inpaint_worker.current_task is not None:
inpaint_fix = inpaint_worker.current_task.inpaint_head_feature
transformer_options["original_shape"] = list(x.shape)
transformer_options["current_index"] = 0
transformer_patches = transformer_options.get("patches", {})
assert (y is not None) == (
self.num_classes is not None
), "must specify y if and only if the model is class-conditional"
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(self.dtype)
emb = self.time_embed(t_emb)
if self.num_classes is not None:
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)
h = x.type(self.dtype)
for id, module in enumerate(self.input_blocks):
transformer_options["block"] = ("input", id)
h = forward_timestep_embed(module, h, emb, context, transformer_options)
if inpaint_fix is not None:
if int(h.shape[1]) == int(inpaint_fix.shape[1]):
h = h + inpaint_fix.to(h)
inpaint_fix = None
if control is not None and 'input' in control and len(control['input']) > 0:
ctrl = control['input'].pop()
if ctrl is not None:
h += ctrl
hs.append(h)
transformer_options["block"] = ("middle", 0)
h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options)
if control is not None and 'middle' in control and len(control['middle']) > 0:
ctrl = control['middle'].pop()
if ctrl is not None:
h += ctrl
for id, module in enumerate(self.output_blocks):
transformer_options["block"] = ("output", id)
hsp = hs.pop()
if control is not None and 'output' in control and len(control['output']) > 0:
ctrl = control['output'].pop()
if ctrl is not None:
hsp += ctrl
if "output_block_patch" in transformer_patches:
patch = transformer_patches["output_block_patch"]
for p in patch:
h, hsp = p(h, hsp, transformer_options)
h = torch.cat([h, hsp], dim=1)
del hsp
if len(hs) > 0:
output_shape = hs[-1].shape
else:
output_shape = None
h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape)
h = h.type(x.dtype)
if self.predict_codebook_ids:
return self.id_predictor(h)
else:
return self.out(h)
def patch_all():
comfy.model_patcher.ModelPatcher.calculate_weight = calculate_weight_patched
comfy.ldm.modules.diffusionmodules.openaimodel.UNetModel.forward = patched_unet_forward
comfy.k_diffusion.sampling.sample_dpmpp_fooocus_2m_sde_inpaint_seamless = sample_dpmpp_fooocus_2m_sde_inpaint_seamless
comfy.k_diffusion.external.DiscreteEpsDDPMDenoiser.forward = patched_discrete_eps_ddpm_denoiser_forward
comfy.model_base.SDXL.encode_adm = sdxl_encode_adm_patched
comfy.sd1_clip.ClipTokenWeightEncoder.encode_token_weights = encode_token_weights_patched_with_a1111_method
return