Fooocus/modules/inpaint_worker.py
lllyasviel bbae307ef2
2.0.80 (#520)
* Rework many patches and some UI details.
* Speed up processing.
* Move Colab to independent branch.
* Implemented CFG Scale and TSNR correction when CFG is bigger than 10.
* Implemented Developer Mode with more options to debug.
2023-10-03 10:36:42 -07:00

224 lines
6.2 KiB
Python

import torch
import numpy as np
import modules.default_pipeline as pipeline
from PIL import Image, ImageFilter
from modules.util import resample_image
inpaint_head = None
class InpaintHead(torch.nn.Module):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.head = torch.nn.Parameter(torch.empty(size=(320, 5, 3, 3), device='cpu'))
def __call__(self, x):
x = torch.nn.functional.pad(x, (1, 1, 1, 1), "replicate")
return torch.nn.functional.conv2d(input=x, weight=self.head)
current_task = None
def box_blur(x, k):
x = Image.fromarray(x)
x = x.filter(ImageFilter.BoxBlur(k))
return np.array(x)
def max33(x):
x = Image.fromarray(x)
x = x.filter(ImageFilter.MaxFilter(3))
return np.array(x)
def morphological_open(x):
x_int32 = np.zeros_like(x).astype(np.int32)
x_int32[x > 127] = 256
for _ in range(32):
maxed = max33(x_int32) - 8
x_int32 = np.maximum(maxed, x_int32)
return x_int32.clip(0, 255).astype(np.uint8)
def imsave(x, path):
x = Image.fromarray(x)
x.save(path)
def regulate_abcd(x, a, b, c, d):
H, W = x.shape[:2]
if a < 0:
a = 0
if a > H:
a = H
if b < 0:
b = 0
if b > H:
b = H
if c < 0:
c = 0
if c > W:
c = W
if d < 0:
d = 0
if d > W:
d = W
return int(a), int(b), int(c), int(d)
def compute_initial_abcd(x):
indices = np.where(x)
a = np.min(indices[0]) - 64
b = np.max(indices[0]) + 65
c = np.min(indices[1]) - 64
d = np.max(indices[1]) + 65
a, b, c, d = regulate_abcd(x, a, b, c, d)
return a, b, c, d
def area_abcd(a, b, c, d):
return (b - a) * (d - c)
def solve_abcd(x, a, b, c, d, k, outpaint):
H, W = x.shape[:2]
if outpaint:
return 0, H, 0, W
min_area = H * W * k
max_area = H * W
while True:
if area_abcd(a, b, c, d) > min_area and abs((b - a) - (d - c)) < 16:
break
if area_abcd(a, b, c, d) >= max_area:
break
add_h = (b - a) < (d - c)
add_w = not add_h
if b - a == H:
add_w = True
if d - c == W:
add_h = True
if add_h:
a -= 1
b += 1
if add_w:
c -= 1
d += 1
a, b, c, d = regulate_abcd(x, a, b, c, d)
return a, b, c, d
def fooocus_fill(image, mask):
current_image = image.copy()
raw_image = image.copy()
area = np.where(mask < 127)
store = raw_image[area]
for k, repeats in [(64, 4), (32, 4), (16, 4), (4, 4), (2, 4)]:
for _ in range(repeats):
current_image = box_blur(current_image, k)
current_image[area] = store
return current_image
class InpaintWorker:
def __init__(self, image, mask, is_outpaint):
# mask processing
self.mask_raw_soft = morphological_open(mask)
self.mask_raw_fg = (self.mask_raw_soft == 255).astype(np.uint8) * 255
self.mask_raw_bg = (self.mask_raw_soft == 0).astype(np.uint8) * 255
self.mask_raw_trim = 255 - np.maximum(self.mask_raw_fg, self.mask_raw_bg)
# image processing
self.image_raw = fooocus_fill(image, self.mask_raw_fg)
# log all images
# imsave(self.image_raw, 'image_raw.png')
# imsave(self.mask_raw_soft, 'mask_raw_soft.png')
# imsave(self.mask_raw_fg, 'mask_raw_fg.png')
# imsave(self.mask_raw_bg, 'mask_raw_bg.png')
# imsave(self.mask_raw_trim, 'mask_raw_trim.png')
# compute abcd
a, b, c, d = compute_initial_abcd(self.mask_raw_bg < 127)
a, b, c, d = solve_abcd(self.mask_raw_bg, a, b, c, d, k=0.618, outpaint=is_outpaint)
# interested area
self.interested_area = (a, b, c, d)
self.mask_interested_soft = self.mask_raw_soft[a:b, c:d]
self.mask_interested_fg = self.mask_raw_fg[a:b, c:d]
self.mask_interested_bg = self.mask_raw_bg[a:b, c:d]
self.mask_interested_trim = self.mask_raw_trim[a:b, c:d]
self.image_interested = self.image_raw[a:b, c:d]
# resize to make images ready for diffusion
H, W, C = self.image_interested.shape
k = (1024.0 ** 2.0 / float(H * W)) ** 0.5
H = int(np.ceil(float(H) * k / 16.0)) * 16
W = int(np.ceil(float(W) * k / 16.0)) * 16
self.image_ready = resample_image(self.image_interested, W, H)
self.mask_ready = resample_image(self.mask_interested_soft, W, H)
# ending
self.latent = None
self.latent_mask = None
self.inpaint_head_feature = None
return
def load_inpaint_guidance(self, latent, mask, model_path):
global inpaint_head
if inpaint_head is None:
inpaint_head = InpaintHead()
sd = torch.load(model_path, map_location='cpu')
inpaint_head.load_state_dict(sd)
process_latent_in = pipeline.xl_base_patched.unet.model.process_latent_in
latent = process_latent_in(latent)
B, C, H, W = latent.shape
mask = torch.nn.functional.interpolate(mask, size=(H, W), mode="bilinear")
mask = mask.round()
feed = torch.cat([mask, latent], dim=1)
inpaint_head.to(device=feed.device, dtype=feed.dtype)
self.inpaint_head_feature = inpaint_head(feed)
return
def load_latent(self, latent, mask):
self.latent = latent
self.latent_mask = mask
def color_correction(self, img):
fg = img.astype(np.float32)
bg = self.image_raw.copy().astype(np.float32)
w = self.mask_raw_soft[:, :, None].astype(np.float32) / 255.0
y = fg * w + bg * (1 - w)
return y.clip(0, 255).astype(np.uint8)
def post_process(self, img):
a, b, c, d = self.interested_area
content = resample_image(img, d - c, b - a)
result = self.image_raw.copy()
result[a:b, c:d] = content
result = self.color_correction(result)
return result
def visualize_mask_processing(self):
result = self.image_raw // 4
a, b, c, d = self.interested_area
result[a:b, c:d] += 64
result[self.mask_raw_trim > 127] += 64
result[self.mask_raw_fg > 127] += 128
return [result, self.mask_raw_soft, self.image_ready, self.mask_ready]