211 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			211 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import fcbh.supported_models
 | |
| import fcbh.supported_models_base
 | |
| 
 | |
| def count_blocks(state_dict_keys, prefix_string):
 | |
|     count = 0
 | |
|     while True:
 | |
|         c = False
 | |
|         for k in state_dict_keys:
 | |
|             if k.startswith(prefix_string.format(count)):
 | |
|                 c = True
 | |
|                 break
 | |
|         if c == False:
 | |
|             break
 | |
|         count += 1
 | |
|     return count
 | |
| 
 | |
| def detect_unet_config(state_dict, key_prefix, dtype):
 | |
|     state_dict_keys = list(state_dict.keys())
 | |
| 
 | |
|     unet_config = {
 | |
|         "use_checkpoint": False,
 | |
|         "image_size": 32,
 | |
|         "out_channels": 4,
 | |
|         "use_spatial_transformer": True,
 | |
|         "legacy": False
 | |
|     }
 | |
| 
 | |
|     y_input = '{}label_emb.0.0.weight'.format(key_prefix)
 | |
|     if y_input in state_dict_keys:
 | |
|         unet_config["num_classes"] = "sequential"
 | |
|         unet_config["adm_in_channels"] = state_dict[y_input].shape[1]
 | |
|     else:
 | |
|         unet_config["adm_in_channels"] = None
 | |
| 
 | |
|     unet_config["dtype"] = dtype
 | |
|     model_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[0]
 | |
|     in_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[1]
 | |
| 
 | |
|     num_res_blocks = []
 | |
|     channel_mult = []
 | |
|     attention_resolutions = []
 | |
|     transformer_depth = []
 | |
|     context_dim = None
 | |
|     use_linear_in_transformer = False
 | |
| 
 | |
| 
 | |
|     current_res = 1
 | |
|     count = 0
 | |
| 
 | |
|     last_res_blocks = 0
 | |
|     last_transformer_depth = 0
 | |
|     last_channel_mult = 0
 | |
| 
 | |
|     while True:
 | |
|         prefix = '{}input_blocks.{}.'.format(key_prefix, count)
 | |
|         block_keys = sorted(list(filter(lambda a: a.startswith(prefix), state_dict_keys)))
 | |
|         if len(block_keys) == 0:
 | |
|             break
 | |
| 
 | |
|         if "{}0.op.weight".format(prefix) in block_keys: #new layer
 | |
|             if last_transformer_depth > 0:
 | |
|                 attention_resolutions.append(current_res)
 | |
|             transformer_depth.append(last_transformer_depth)
 | |
|             num_res_blocks.append(last_res_blocks)
 | |
|             channel_mult.append(last_channel_mult)
 | |
| 
 | |
|             current_res *= 2
 | |
|             last_res_blocks = 0
 | |
|             last_transformer_depth = 0
 | |
|             last_channel_mult = 0
 | |
|         else:
 | |
|             res_block_prefix = "{}0.in_layers.0.weight".format(prefix)
 | |
|             if res_block_prefix in block_keys:
 | |
|                 last_res_blocks += 1
 | |
|                 last_channel_mult = state_dict["{}0.out_layers.3.weight".format(prefix)].shape[0] // model_channels
 | |
| 
 | |
|             transformer_prefix = prefix + "1.transformer_blocks."
 | |
|             transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys)))
 | |
|             if len(transformer_keys) > 0:
 | |
|                 last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}')
 | |
|                 if context_dim is None:
 | |
|                     context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1]
 | |
|                     use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2
 | |
| 
 | |
|         count += 1
 | |
| 
 | |
|     if last_transformer_depth > 0:
 | |
|         attention_resolutions.append(current_res)
 | |
|     transformer_depth.append(last_transformer_depth)
 | |
|     num_res_blocks.append(last_res_blocks)
 | |
|     channel_mult.append(last_channel_mult)
 | |
|     transformer_depth_middle = count_blocks(state_dict_keys, '{}middle_block.1.transformer_blocks.'.format(key_prefix) + '{}')
 | |
| 
 | |
|     if len(set(num_res_blocks)) == 1:
 | |
|         num_res_blocks = num_res_blocks[0]
 | |
| 
 | |
|     if len(set(transformer_depth)) == 1:
 | |
|         transformer_depth = transformer_depth[0]
 | |
| 
 | |
|     unet_config["in_channels"] = in_channels
 | |
|     unet_config["model_channels"] = model_channels
 | |
|     unet_config["num_res_blocks"] = num_res_blocks
 | |
|     unet_config["attention_resolutions"] = attention_resolutions
 | |
|     unet_config["transformer_depth"] = transformer_depth
 | |
|     unet_config["channel_mult"] = channel_mult
 | |
|     unet_config["transformer_depth_middle"] = transformer_depth_middle
 | |
|     unet_config['use_linear_in_transformer'] = use_linear_in_transformer
 | |
|     unet_config["context_dim"] = context_dim
 | |
|     return unet_config
 | |
| 
 | |
| def model_config_from_unet_config(unet_config):
 | |
|     for model_config in fcbh.supported_models.models:
 | |
|         if model_config.matches(unet_config):
 | |
|             return model_config(unet_config)
 | |
| 
 | |
|     print("no match", unet_config)
 | |
|     return None
 | |
| 
 | |
| def model_config_from_unet(state_dict, unet_key_prefix, dtype, use_base_if_no_match=False):
 | |
|     unet_config = detect_unet_config(state_dict, unet_key_prefix, dtype)
 | |
|     model_config = model_config_from_unet_config(unet_config)
 | |
|     if model_config is None and use_base_if_no_match:
 | |
|         return fcbh.supported_models_base.BASE(unet_config)
 | |
|     else:
 | |
|         return model_config
 | |
| 
 | |
| def unet_config_from_diffusers_unet(state_dict, dtype):
 | |
|     match = {}
 | |
|     attention_resolutions = []
 | |
| 
 | |
|     attn_res = 1
 | |
|     for i in range(5):
 | |
|         k = "down_blocks.{}.attentions.1.transformer_blocks.0.attn2.to_k.weight".format(i)
 | |
|         if k in state_dict:
 | |
|             match["context_dim"] = state_dict[k].shape[1]
 | |
|             attention_resolutions.append(attn_res)
 | |
|         attn_res *= 2
 | |
| 
 | |
|     match["attention_resolutions"] = attention_resolutions
 | |
| 
 | |
|     match["model_channels"] = state_dict["conv_in.weight"].shape[0]
 | |
|     match["in_channels"] = state_dict["conv_in.weight"].shape[1]
 | |
|     match["adm_in_channels"] = None
 | |
|     if "class_embedding.linear_1.weight" in state_dict:
 | |
|         match["adm_in_channels"] = state_dict["class_embedding.linear_1.weight"].shape[1]
 | |
|     elif "add_embedding.linear_1.weight" in state_dict:
 | |
|         match["adm_in_channels"] = state_dict["add_embedding.linear_1.weight"].shape[1]
 | |
| 
 | |
|     SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
 | |
|             'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
 | |
|             'num_res_blocks': 2, 'attention_resolutions': [2, 4], 'transformer_depth': [0, 2, 10], 'channel_mult': [1, 2, 4],
 | |
|             'transformer_depth_middle': 10, 'use_linear_in_transformer': True, 'context_dim': 2048, "num_head_channels": 64}
 | |
| 
 | |
|     SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
 | |
|                     'num_classes': 'sequential', 'adm_in_channels': 2560, 'dtype': dtype, 'in_channels': 4, 'model_channels': 384,
 | |
|                     'num_res_blocks': 2, 'attention_resolutions': [2, 4], 'transformer_depth': [0, 4, 4, 0], 'channel_mult': [1, 2, 4, 4],
 | |
|                     'transformer_depth_middle': 4, 'use_linear_in_transformer': True, 'context_dim': 1280, "num_head_channels": 64}
 | |
| 
 | |
|     SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
 | |
|             'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': 2,
 | |
|             'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
 | |
|             'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024, "num_head_channels": 64}
 | |
| 
 | |
|     SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
 | |
|                     'num_classes': 'sequential', 'adm_in_channels': 2048, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
 | |
|                     'num_res_blocks': 2, 'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
 | |
|                     'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024, "num_head_channels": 64}
 | |
| 
 | |
|     SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
 | |
|                     'num_classes': 'sequential', 'adm_in_channels': 1536, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
 | |
|                     'num_res_blocks': 2, 'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
 | |
|                     'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024}
 | |
| 
 | |
|     SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
 | |
|             'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': 2,
 | |
|             'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
 | |
|             'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, "num_heads": 8}
 | |
| 
 | |
|     SDXL_mid_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
 | |
|             'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
 | |
|             'num_res_blocks': 2, 'attention_resolutions': [4], 'transformer_depth': [0, 0, 1], 'channel_mult': [1, 2, 4],
 | |
|             'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 2048, "num_head_channels": 64}
 | |
| 
 | |
|     SDXL_small_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
 | |
|             'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
 | |
|             'num_res_blocks': 2, 'attention_resolutions': [], 'transformer_depth': [0, 0, 0], 'channel_mult': [1, 2, 4],
 | |
|             'transformer_depth_middle': 0, 'use_linear_in_transformer': True, "num_head_channels": 64, 'context_dim': 1}
 | |
| 
 | |
|     SDXL_diffusers_inpaint = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
 | |
|             'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 9, 'model_channels': 320,
 | |
|             'num_res_blocks': 2, 'attention_resolutions': [2, 4], 'transformer_depth': [0, 2, 10], 'channel_mult': [1, 2, 4],
 | |
|             'transformer_depth_middle': 10, 'use_linear_in_transformer': True, 'context_dim': 2048, "num_head_channels": 64}
 | |
| 
 | |
|     supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint]
 | |
| 
 | |
|     for unet_config in supported_models:
 | |
|         matches = True
 | |
|         for k in match:
 | |
|             if match[k] != unet_config[k]:
 | |
|                 matches = False
 | |
|                 break
 | |
|         if matches:
 | |
|             return unet_config
 | |
|     return None
 | |
| 
 | |
| def model_config_from_diffusers_unet(state_dict, dtype):
 | |
|     unet_config = unet_config_from_diffusers_unet(state_dict, dtype)
 | |
|     if unet_config is not None:
 | |
|         return model_config_from_unet_config(unet_config)
 | |
|     return None
 |