171 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			171 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import modules.core as core
 | |
| import os
 | |
| import torch
 | |
| import modules.path
 | |
| 
 | |
| from comfy.model_base import SDXL, SDXLRefiner
 | |
| 
 | |
| 
 | |
| xl_base: core.StableDiffusionModel = None
 | |
| xl_base_hash = ''
 | |
| 
 | |
| xl_refiner: core.StableDiffusionModel = None
 | |
| xl_refiner_hash = ''
 | |
| 
 | |
| xl_base_patched: core.StableDiffusionModel = None
 | |
| xl_base_patched_hash = ''
 | |
| 
 | |
| 
 | |
| def refresh_base_model(name):
 | |
|     global xl_base, xl_base_hash, xl_base_patched, xl_base_patched_hash
 | |
|     if xl_base_hash == str(name):
 | |
|         return
 | |
| 
 | |
|     filename = os.path.join(modules.path.modelfile_path, name)
 | |
| 
 | |
|     if xl_base is not None:
 | |
|         xl_base.to_meta()
 | |
|         xl_base = None
 | |
| 
 | |
|     xl_base = core.load_model(filename)
 | |
|     if not isinstance(xl_base.unet.model, SDXL):
 | |
|         print('Model not supported. Fooocus only support SDXL model as the base model.')
 | |
|         xl_base = None
 | |
|         xl_base_hash = ''
 | |
|         refresh_base_model(modules.path.default_base_model_name)
 | |
|         xl_base_hash = name
 | |
|         xl_base_patched = xl_base
 | |
|         xl_base_patched_hash = ''
 | |
|         return
 | |
| 
 | |
|     xl_base_hash = name
 | |
|     xl_base_patched = xl_base
 | |
|     xl_base_patched_hash = ''
 | |
|     print(f'Base model loaded: {xl_base_hash}')
 | |
| 
 | |
|     return
 | |
| 
 | |
| 
 | |
| def refresh_refiner_model(name):
 | |
|     global xl_refiner, xl_refiner_hash
 | |
|     if xl_refiner_hash == str(name):
 | |
|         return
 | |
| 
 | |
|     if name == 'None':
 | |
|         xl_refiner = None
 | |
|         xl_refiner_hash = ''
 | |
|         print(f'Refiner unloaded.')
 | |
|         return
 | |
| 
 | |
|     filename = os.path.join(modules.path.modelfile_path, name)
 | |
| 
 | |
|     if xl_refiner is not None:
 | |
|         xl_refiner.to_meta()
 | |
|         xl_refiner = None
 | |
| 
 | |
|     xl_refiner = core.load_model(filename)
 | |
|     if not isinstance(xl_refiner.unet.model, SDXLRefiner):
 | |
|         print('Model not supported. Fooocus only support SDXL refiner as the refiner.')
 | |
|         xl_refiner = None
 | |
|         xl_refiner_hash = ''
 | |
|         print(f'Refiner unloaded.')
 | |
|         return
 | |
| 
 | |
|     xl_refiner_hash = name
 | |
|     print(f'Refiner model loaded: {xl_refiner_hash}')
 | |
| 
 | |
|     xl_refiner.vae.first_stage_model.to('meta')
 | |
|     xl_refiner.vae = None
 | |
|     return
 | |
| 
 | |
| 
 | |
| def refresh_loras(loras):
 | |
|     global xl_base, xl_base_patched, xl_base_patched_hash
 | |
|     if xl_base_patched_hash == str(loras):
 | |
|         return
 | |
| 
 | |
|     model = xl_base
 | |
|     for name, weight in loras:
 | |
|         if name == 'None':
 | |
|             continue
 | |
| 
 | |
|         filename = os.path.join(modules.path.lorafile_path, name)
 | |
|         model = core.load_lora(model, filename, strength_model=weight, strength_clip=weight)
 | |
|     xl_base_patched = model
 | |
|     xl_base_patched_hash = str(loras)
 | |
|     print(f'LoRAs loaded: {xl_base_patched_hash}')
 | |
| 
 | |
|     return
 | |
| 
 | |
| 
 | |
| refresh_base_model(modules.path.default_base_model_name)
 | |
| refresh_refiner_model(modules.path.default_refiner_model_name)
 | |
| refresh_loras([(modules.path.default_lora_name, 0.5), ('None', 0.5), ('None', 0.5), ('None', 0.5), ('None', 0.5)])
 | |
| 
 | |
| positive_conditions_cache = None
 | |
| negative_conditions_cache = None
 | |
| positive_conditions_refiner_cache = None
 | |
| negative_conditions_refiner_cache = None
 | |
| 
 | |
| 
 | |
| def clean_prompt_cond_caches():
 | |
|     global positive_conditions_cache, negative_conditions_cache, \
 | |
|         positive_conditions_refiner_cache, negative_conditions_refiner_cache
 | |
|     positive_conditions_cache = None
 | |
|     negative_conditions_cache = None
 | |
|     positive_conditions_refiner_cache = None
 | |
|     negative_conditions_refiner_cache = None
 | |
|     return
 | |
| 
 | |
| 
 | |
| @torch.no_grad()
 | |
| def process(positive_prompt, negative_prompt, steps, switch, width, height, image_seed, callback):
 | |
|     global positive_conditions_cache, negative_conditions_cache, \
 | |
|         positive_conditions_refiner_cache, negative_conditions_refiner_cache
 | |
| 
 | |
|     positive_conditions = core.encode_prompt_condition(clip=xl_base_patched.clip, prompt=positive_prompt) if positive_conditions_cache is None else positive_conditions_cache
 | |
|     negative_conditions = core.encode_prompt_condition(clip=xl_base_patched.clip, prompt=negative_prompt) if negative_conditions_cache is None else negative_conditions_cache
 | |
| 
 | |
|     positive_conditions_cache = positive_conditions
 | |
|     negative_conditions_cache = negative_conditions
 | |
| 
 | |
|     empty_latent = core.generate_empty_latent(width=width, height=height, batch_size=1)
 | |
| 
 | |
|     if xl_refiner is not None:
 | |
|         positive_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=positive_prompt) if positive_conditions_refiner_cache is None else positive_conditions_refiner_cache
 | |
|         negative_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=negative_prompt) if negative_conditions_refiner_cache is None else negative_conditions_refiner_cache
 | |
| 
 | |
|         positive_conditions_refiner_cache = positive_conditions_refiner
 | |
|         negative_conditions_refiner_cache = negative_conditions_refiner
 | |
| 
 | |
|         sampled_latent = core.ksampler_with_refiner(
 | |
|             model=xl_base_patched.unet,
 | |
|             positive=positive_conditions,
 | |
|             negative=negative_conditions,
 | |
|             refiner=xl_refiner.unet,
 | |
|             refiner_positive=positive_conditions_refiner,
 | |
|             refiner_negative=negative_conditions_refiner,
 | |
|             refiner_switch_step=switch,
 | |
|             latent=empty_latent,
 | |
|             steps=steps, start_step=0, last_step=steps, disable_noise=False, force_full_denoise=True,
 | |
|             seed=image_seed,
 | |
|             callback_function=callback
 | |
|         )
 | |
| 
 | |
|     else:
 | |
|         sampled_latent = core.ksampler(
 | |
|             model=xl_base_patched.unet,
 | |
|             positive=positive_conditions,
 | |
|             negative=negative_conditions,
 | |
|             latent=empty_latent,
 | |
|             steps=steps, start_step=0, last_step=steps, disable_noise=False, force_full_denoise=True,
 | |
|             seed=image_seed,
 | |
|             callback_function=callback
 | |
|         )
 | |
| 
 | |
|     decoded_latent = core.decode_vae(vae=xl_base_patched.vae, latent_image=sampled_latent)
 | |
| 
 | |
|     images = core.image_to_numpy(decoded_latent)
 | |
| 
 | |
|     return images
 |