91 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			91 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import threading
 | |
| 
 | |
| 
 | |
| buffer = []
 | |
| outputs = []
 | |
| 
 | |
| 
 | |
| def worker():
 | |
|     global buffer, outputs
 | |
| 
 | |
|     import os
 | |
|     import time
 | |
|     import shared
 | |
|     import random
 | |
|     import modules.default_pipeline as pipeline
 | |
|     import modules.path
 | |
| 
 | |
|     from PIL import Image
 | |
|     from modules.sdxl_styles import apply_style, aspect_ratios
 | |
|     from modules.util import generate_temp_filename
 | |
| 
 | |
|     try:
 | |
|         async_gradio_app = shared.gradio_root
 | |
|         flag = f'''App started successful. Use the app with {str(async_gradio_app.local_url)} or {str(async_gradio_app.server_name)}:{str(async_gradio_app.server_port)}'''
 | |
|         if async_gradio_app.share:
 | |
|             flag += f''' or {async_gradio_app.share_url}'''
 | |
|         print(flag)
 | |
|     except Exception as e:
 | |
|         print(e)
 | |
| 
 | |
|     def handler(task):
 | |
|         prompt, negative_prompt, style_selction, performance_selction, \
 | |
|         aspect_ratios_selction, image_number, image_seed, base_model_name, refiner_model_name, \
 | |
|         l1, w1, l2, w2, l3, w3, l4, w4, l5, w5 = task
 | |
| 
 | |
|         loras = [(l1, w1), (l2, w2), (l3, w3), (l4, w4), (l5, w5)]
 | |
| 
 | |
|         pipeline.refresh_base_model(base_model_name)
 | |
|         pipeline.refresh_refiner_model(refiner_model_name)
 | |
|         pipeline.refresh_loras(loras)
 | |
|         pipeline.clean_prompt_cond_caches()
 | |
| 
 | |
|         p_txt, n_txt = apply_style(style_selction, prompt, negative_prompt)
 | |
| 
 | |
|         if performance_selction == 'Speed':
 | |
|             steps = 30
 | |
|             switch = 20
 | |
|         else:
 | |
|             steps = 60
 | |
|             switch = 40
 | |
| 
 | |
|         width, height = aspect_ratios[aspect_ratios_selction]
 | |
| 
 | |
|         results = []
 | |
|         seed = image_seed
 | |
|         if not isinstance(seed, int) or seed < 0 or seed > 65535:
 | |
|             seed = random.randint(1, 65535)
 | |
| 
 | |
|         all_steps = steps * image_number
 | |
| 
 | |
|         def callback(step, x0, x, total_steps, y):
 | |
|             done_steps = i * steps + step
 | |
|             outputs.append(['preview', (
 | |
|                 int(100.0 * float(done_steps) / float(all_steps)),
 | |
|                 f'Step {step}/{total_steps} in the {i}-th Sampling',
 | |
|                 y)])
 | |
| 
 | |
|         for i in range(image_number):
 | |
|             imgs = pipeline.process(p_txt, n_txt, steps, switch, width, height, seed, callback=callback)
 | |
| 
 | |
|             for x in imgs:
 | |
|                 local_temp_filename = generate_temp_filename(folder=modules.path.temp_outputs_path, extension='png')
 | |
|                 os.makedirs(os.path.dirname(local_temp_filename), exist_ok=True)
 | |
|                 Image.fromarray(x).save(local_temp_filename)
 | |
| 
 | |
|             seed += 1
 | |
|             results += imgs
 | |
| 
 | |
|         outputs.append(['results', results])
 | |
|         return
 | |
| 
 | |
|     while True:
 | |
|         time.sleep(0.01)
 | |
|         if len(buffer) > 0:
 | |
|             task = buffer.pop(0)
 | |
|             handler(task)
 | |
|     pass
 | |
| 
 | |
| 
 | |
| threading.Thread(target=worker, daemon=True).start()
 |