157 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			157 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import os
 | |
| import math
 | |
| 
 | |
| import einops
 | |
| import numpy as np
 | |
| import torch
 | |
| import gc
 | |
| import safetensors.torch
 | |
| 
 | |
| from omegaconf import OmegaConf
 | |
| from sgm.util import instantiate_from_config
 | |
| 
 | |
| from sgm.modules.diffusionmodules.sampling import EulerAncestralSampler
 | |
| 
 | |
| 
 | |
| def get_unique_embedder_keys_from_conditioner(conditioner):
 | |
|     return list(set([x.input_key for x in conditioner.embedders]))
 | |
| 
 | |
| 
 | |
| def get_batch(keys, value_dict, N, device="cuda"):
 | |
|     # Hardcoded demo setups; might undergo some changes in the future
 | |
| 
 | |
|     batch = {}
 | |
|     batch_uc = {}
 | |
| 
 | |
|     for key in keys:
 | |
|         if key == "txt":
 | |
|             batch["txt"] = (
 | |
|                 np.repeat([value_dict["prompt"]], repeats=math.prod(N))
 | |
|                 .reshape(N)
 | |
|                 .tolist()
 | |
|             )
 | |
|             batch_uc["txt"] = (
 | |
|                 np.repeat([value_dict["negative_prompt"]], repeats=math.prod(N))
 | |
|                 .reshape(N)
 | |
|                 .tolist()
 | |
|             )
 | |
|         elif key == "original_size_as_tuple":
 | |
|             batch["original_size_as_tuple"] = (
 | |
|                 torch.tensor([value_dict["orig_height"], value_dict["orig_width"]])
 | |
|                 .to(device)
 | |
|                 .repeat(*N, 1)
 | |
|             )
 | |
|         elif key == "crop_coords_top_left":
 | |
|             batch["crop_coords_top_left"] = (
 | |
|                 torch.tensor(
 | |
|                     [value_dict["crop_coords_top"], value_dict["crop_coords_left"]]
 | |
|                 )
 | |
|                 .to(device)
 | |
|                 .repeat(*N, 1)
 | |
|             )
 | |
|         elif key == "aesthetic_score":
 | |
|             batch["aesthetic_score"] = (
 | |
|                 torch.tensor([value_dict["aesthetic_score"]]).to(device).repeat(*N, 1)
 | |
|             )
 | |
|             batch_uc["aesthetic_score"] = (
 | |
|                 torch.tensor([value_dict["negative_aesthetic_score"]])
 | |
|                 .to(device)
 | |
|                 .repeat(*N, 1)
 | |
|             )
 | |
| 
 | |
|         elif key == "target_size_as_tuple":
 | |
|             batch["target_size_as_tuple"] = (
 | |
|                 torch.tensor([value_dict["target_height"], value_dict["target_width"]])
 | |
|                 .to(device)
 | |
|                 .repeat(*N, 1)
 | |
|             )
 | |
|         else:
 | |
|             batch[key] = value_dict[key]
 | |
| 
 | |
|     for key in batch.keys():
 | |
|         if key not in batch_uc and isinstance(batch[key], torch.Tensor):
 | |
|             batch_uc[key] = torch.clone(batch[key])
 | |
|     return batch, batch_uc
 | |
| 
 | |
| 
 | |
| sampler = EulerAncestralSampler(
 | |
|     num_steps=40,
 | |
|     discretization_config={
 | |
|         "target": "sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization",
 | |
|     },
 | |
|     guider_config={
 | |
|         "target": "sgm.modules.diffusionmodules.guiders.VanillaCFG",
 | |
|         "params": {"scale": 9.0, "dyn_thresh_config": {
 | |
|             "target": "sgm.modules.diffusionmodules.sampling_utils.NoDynamicThresholding"
 | |
|         }},
 | |
|     },
 | |
|     eta=1.0,
 | |
|     s_noise=1.0,
 | |
|     verbose=True,
 | |
| )
 | |
| 
 | |
| config_path = './sd_xl_base.yaml'
 | |
| config = OmegaConf.load(config_path)
 | |
| model = instantiate_from_config(config.model).cpu()
 | |
| model.eval()
 | |
| model.load_state_dict(safetensors.torch.load_file('./sd_xl_base_1.0.safetensors'), strict=False)
 | |
| 
 | |
| # model.conditioner.cuda()
 | |
| 
 | |
| with torch.no_grad():
 | |
| 
 | |
|     model.conditioner.embedders[0].device = 'cpu'
 | |
|     model.conditioner.embedders[1].device = 'cpu'
 | |
| 
 | |
|     value_dict = {
 | |
|         "prompt": "a handsome man in forest", "negative_prompt": "ugly, bad", "orig_height": 1024, "orig_width": 1024,
 | |
|         "crop_coords_top": 0, "crop_coords_left": 0, "target_height": 1024, "target_width": 1024, "aesthetic_score": 7.5,
 | |
|         "negative_aesthetic_score": 2.0,
 | |
|     }
 | |
| 
 | |
|     batch, batch_uc = get_batch(
 | |
|         get_unique_embedder_keys_from_conditioner(model.conditioner),
 | |
|         value_dict,
 | |
|         [1],
 | |
|     )
 | |
| 
 | |
|     c, uc = model.conditioner.get_unconditional_conditioning(
 | |
|         batch,
 | |
|         batch_uc=batch_uc)
 | |
|     # model.conditioner.cpu()
 | |
| 
 | |
|     c = {a: b.to(torch.float16) for a, b in c.items()}
 | |
|     uc = {a: b.to(torch.float16) for a, b in uc.items()}
 | |
| 
 | |
|     torch.cuda.empty_cache()
 | |
|     torch.cuda.ipc_collect()
 | |
| 
 | |
|     shape = (1, 4, 128, 128)
 | |
|     randn = torch.randn(shape).to(torch.float16).cuda()
 | |
| 
 | |
| 
 | |
|     def denoiser(input, sigma, c):
 | |
|         return model.denoiser(model.model, input, sigma, c)
 | |
| 
 | |
| 
 | |
|     with torch.no_grad():
 | |
|         model.model.to(torch.float16).cuda()
 | |
|         model.denoiser.to(torch.float16).cuda()
 | |
|         samples_z = sampler(denoiser, randn, cond=c, uc=uc)
 | |
|         model.model.cpu()
 | |
|         model.denoiser.cpu()
 | |
| 
 | |
|     torch.cuda.empty_cache()
 | |
|     torch.cuda.ipc_collect()
 | |
| 
 | |
|     with torch.no_grad():
 | |
|         model.first_stage_model.to(torch.float16).cuda()
 | |
|         samples_x = model.decode_first_stage(samples_z)
 | |
|         samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
 | |
|         model.first_stage_model.cpu()
 | |
| 
 | |
|     import cv2
 | |
|     samples = einops.rearrange(samples, 'b c h w -> b h w c')[0] * 127.5 + 127.5
 | |
|     samples = samples.cpu().numpy().clip(0, 255).astype(np.uint8)
 | |
|     cv2.imwrite('img.png', samples)
 |